Skip to main content

Developmental Bone Biology

  • Chapter
  • First Online:
Pediatric Orthopedic Deformities, Volume 1
  • 1909 Accesses

Abstract

Developmental Bone Biology describes skeletal development as outlined by several investigational approaches including: histology at the light and electron microscopic levels; molecular biology outlining the wide array of gene and molecular controls for skeletal tissue differentiation, 3- and 4-dimensional limb bud axial differentiation and growth, and synthesis of structural macromolecules; mineralization; mechanical–biophysical effects on the developing skeleton; and radiologic parameters of growth including appearance of secondary ossification centers and times of physeal fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro F, Holtrop ME, Glimcher MJ. Organization and cellular biology of the perichondrial ossification groove of Ranvier. J Bone Joint Surg. 1977;59-A:703–23.

    Google Scholar 

  2. Shapiro F. Epiphyseal disorders. N Engl J Med. 1987;317(27):1702–10.

    Article  PubMed  CAS  Google Scholar 

  3. Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 2008;15:53–76.

    PubMed  CAS  Google Scholar 

  4. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    Article  PubMed  CAS  Google Scholar 

  5. Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000;289(5484):1501–4.

    Article  PubMed  CAS  Google Scholar 

  6. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):756–64.

    Article  Google Scholar 

  7. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23.

    Article  PubMed  CAS  Google Scholar 

  9. Soysa NS, Alles N. NF-kappaB functions in osteoclasts. Biochem Biophys Res Commun. 2009;378(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  10. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8.

    Article  PubMed  CAS  Google Scholar 

  11. Shapiro F. Variable conformation of GAP junctions linking bone cells: a transmission electron microscopic study of linear, stacked linear, curvilinear, oval, and annular junctions. Calcif Tissue Int. 1997;61(4):285–93.

    Article  PubMed  CAS  Google Scholar 

  12. Burger EH, Klein-Nulend J. Mechanotransduction in bone–role of the lacuno-canalicular network. FASEB J. 1999;13(Suppl):S101–12.

    PubMed  CAS  Google Scholar 

  13. Palumbo C, Palazzini S, Marotti G. Morphological study of intercellular junctions during osteocyte differentiation. Bone. 1990;11(6):401–6.

    Article  PubMed  CAS  Google Scholar 

  14. Palumbo C, Palazzini S, Zaffe D, Marotti G. Osteocyte differentiation in the tibia of newborn rabbit: an ultrastructural study of the formation of cytoplasmic processes. Acta Anat. 1990;137(4):350–8.

    Article  PubMed  CAS  Google Scholar 

  15. Rubinacci A, Covini M, Bisogni C, et al. Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs. Am J Physiol Endocrinol Metab. 2002;282(4):E851–64.

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro F. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am. 1988;70(7):1067–81.

    PubMed  CAS  Google Scholar 

  17. Shapiro F, Cahill C, Malatantis G, Nayak RC. Transmission electron microscopic demonstration of vimentin in rat osteoblast and osteocyte cell bodies and processes using the immunogold technique. Anat Rec. 1995;241(1):39–48.

    Article  PubMed  CAS  Google Scholar 

  18. Felts WJ. The prenatal development of the human femur. Am J Anat. 1954;94(1):1–45.

    Article  PubMed  CAS  Google Scholar 

  19. Larsen WJ. Human embryology. New York: Churchill Livingstone; 1993.

    Google Scholar 

  20. O’Rahilly R, Gardner E, Gray DJ. The skeletal development of the hand. Clin Orthop Rel Res. 1959;13:42–50.

    Google Scholar 

  21. O’Rahilly R, Gardner E, Gray DJ. The skeletal development of the foot. Clin Orthop. 1960;16:7–14.

    PubMed  Google Scholar 

  22. O’Rahilly R, Gardner E. The timing and sequence of events in the development of the limbs in the human embryo. Anat Embryol. 1975;148(1):1–23.

    Article  PubMed  Google Scholar 

  23. O’Rahilly R. Early human development and the chief sources of information on staged human embryos. Eur J Obstet Gynecol Reprod Biol. 1979;9(4):273–80.

    Article  PubMed  Google Scholar 

  24. Gardner E, Gray DJ. Prenatal development of the human hip joint. Am J Anat. 1950;87(2):163–211.

    Article  PubMed  CAS  Google Scholar 

  25. Gray DJ, Gardner E. The prenatal development of the human humerus. Am J Anat. 1969;124(4):431–46.

    Article  PubMed  CAS  Google Scholar 

  26. Rosenberg L. Chemical basis for the histological use of safranin O in the study of articular cartilage. J Bone Joint Surg Am. 1971;53(1):69–82.

    PubMed  CAS  Google Scholar 

  27. Belchier J. An account of the bones of animals changed to a red colour by aliment only. Phil Trans Roy Soc Lond. 1736;39:287–88.

    Google Scholar 

  28. Delaporte F. Theories of osteogenesis in the eighteenth century. J Hist Biol. Fall. 1983;16(3):343–60.

    Article  CAS  Google Scholar 

  29. Dobson J. Robert Nesbitt. Pioneers of osteogeny. J Bone Joint Surg. 1948;30B:551–5.

    Google Scholar 

  30. Duhamel HL. Sur une racine qui a la propriete de teindre en rouge les os des animanx vivants. Mem Acad Roy Sci. 1739;52:1–13.

    Google Scholar 

  31. Duhamel HL. Premiere memoire. Mem Acad Roy Sci. 1741:98.

    Google Scholar 

  32. Duhamel HL. Troisieme memoire. Sur le developpement et lacrue des os des animaux. Mem Acad Roy Sci. 1742;55:354–70.

    Google Scholar 

  33. Duhamel HL. Quatrieme memoire sur les os. Mem Acad Roy Sci. 1743;56:87.

    Google Scholar 

  34. Duhamel HL. Cinquieme memoire sur les os. Mem Acad Roy Sci. 1743;56:111–45.

    Google Scholar 

  35. Hales S. Vegetable statics. Statistical essays. London: Innys and Woodward; 1727.

    Google Scholar 

  36. Hunter J. On the growth of bones. In observations on certain parts of the animal oeconommy. Philadelphia: Haswell, Barrington, Haswell: Ed R. Owen, 1841. p. 319–23.

    Google Scholar 

  37. Keith A. Menders of the Maimed. London: Henry Froude: Oxford University Press; 1919.

    Google Scholar 

  38. Nesbitt R. Human osteogeny. London: T. Wood 1736.

    Google Scholar 

  39. Wolff CF. Theoria generationis. Halle. 1759.

    Google Scholar 

  40. Russell ES. Form and function. A contribution to the history of animal morphology. London: J Murray; 1916 and Chicago: University of Chicago Press;1982.

    Google Scholar 

  41. Baer KE von. Ueber Entwickelungsgeschichte der Thiere, Beobachtung und Reflexion I. Thiel, 1828; II. Thiel, 1837 Konigsberg Borntrager 1828, 1837.

    Google Scholar 

  42. Baer MJ, Ackerman JL. A longitudinal vital staining method for the study of apposition in bone. In: Studies on the anatomy and function of bone and joints. New York: Springer 1966. p. 81–92.

    Google Scholar 

  43. Shapiro F. Vertebral development of the chick embryo during days 3–19 of incubation. J Morphol. 1992;213(3):317–33.

    Article  PubMed  CAS  Google Scholar 

  44. Ovchinnikov D. Alcian blue/alizarin red staining of cartilage and bone in mouse. Cold Spring Harb Protoc. 2009. doi:10.1101/pdb.prot5170.

    Google Scholar 

  45. Flourens MJ-P. Nouvelles recherches concernant l’action de la garance sur les os (Quatrieme memnoire). Comp Rend Hebdo Acad Sci 1841;12:276–83.

    Google Scholar 

  46. Flourens MJ-P. Recherches sur le developpement des os (Cinquieme memoire). Comp Rend Hebdo Acad Sci. 1841;13:671–82.

    Google Scholar 

  47. Flourens MJ-P. Recherches sur le developpement des os (Septieme memoire). Comp Rend Acad Sci. 1842;15:875–83.

    Google Scholar 

  48. Flourens MJ-P. Theorie experimentale de la formation des os. Paris: J-B Bailliere; 1847.

    Book  Google Scholar 

  49. Flourens MJ-P. Note sur le developpement des os en longuer. Comp Rend Acad Sci. 1861;62:186–9.

    Google Scholar 

  50. Howship J. Formation of bone. Med Chir Trans. 1815;6:263–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Ollier L. Traite experimental et clinique de la regeneration des os et de la production artificielle du tissu osseux. Paris: Masson; 1867.

    Google Scholar 

  52. Koelliker A. Mikroskopische Anatomie oder Gewebelehre des Menschen. Leipzig: Verlag von Wilhelm Engelmann; 1850.

    Google Scholar 

  53. Koelliker A. Handbuch der Gewebelehre des Menschen, vol. One. Leipzig: Verlag von Wilhelm Engelmann; 1889.

    Google Scholar 

  54. Broca. Sur quelque points de l’anatomie pathologique du rachitisme. Bull Soc Anat Paris 1852;27:141–67.

    Google Scholar 

  55. Broca. Sur quelque points de l’anatomie pathologique du rachitisme. Bull Soc Anat Paris. 1852;27:542–96.

    Google Scholar 

  56. Tomes J, De Morgan C. Observations on the structure and development of bone. Phil Trans Roy Soc Lond. 1853;143:109–39.

    Article  Google Scholar 

  57. Muller H. Ueber die entwickelung der knochensubstanz nebst bemerkungen uber den bau rachitischer knochen. Zeit f Wissen Zool. 1858;9:149–233.

    Google Scholar 

  58. Retterer E. Evolution du cartilage transitoire. J de l’Anat Physiol. 1900;36:467–565.

    Google Scholar 

  59. Virchow R. Cellular pathology. Tr by F. Chance, London: John Churchill; 1860.

    Google Scholar 

  60. Gegenbaur C. Ueber die bildung des knochengewebes. Jena Zeit f Med Naturwissen. 1864;1:343–69.

    Google Scholar 

  61. De la Ollier L. part proportionelle qui revient a chaque extremite des os des membres dans leur accroisment en longuer. J Physiol de l’Homme et des Animaux. 1861;4:87–102.

    Google Scholar 

  62. Ollier L. De l’accroissement en longuer des os des membres et de la part proportionelle qu’y prennent leurs deux extremities. Comp Rend Hebdo Acad Sci. 1861;62:130–2.

    Google Scholar 

  63. Waldeyer. Ueber den ossifikationsprocess. Arch Mikroskop Anat 1865;1:354–75.

    Google Scholar 

  64. Schafer EA. General anatomy or histology. In: Quain’s elements of anatomy. Vol I, part II, ed by EA Schafer, GD Thane. London: Longmans, Green; 1893.

    Google Scholar 

  65. Bidder A. Osteobiologie. Arch f Mikroskop Anat. 1906;68:137–213.

    Article  Google Scholar 

  66. Brash JC. Some problems in the growth and development mechanics of bone. Edinburg Med J 1934;41:305–19 and 363–87.

    Google Scholar 

  67. Payton CG. The growth in length of the long bones in the madder-fed pig. J Anat. 1932;66:414–25.

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Payton CG. The growth of the epiphyses of the long bones in the madder-fed pig. J Anat. 1933;67:371–81.

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Stump CW. The histogenesis of bone. J Anat. 1925;49:136–54.

    Google Scholar 

  70. Dodds GS. Row formation and other types of arrangment of cartilage cells in endochondral ossification. Anat Rec. 1930;46:385–99.

    Article  Google Scholar 

  71. Dodds GS. Osteoclasts and cartilage removal in endochondral ossification of certain mammals. Am J Anat. 1932;50:97–126.

    Article  Google Scholar 

  72. Baur A. Zur lehre von der verknocherung des primordialen knorpels. Archiv Anat Physiol 1857:347–53.

    Google Scholar 

  73. Ranvier LA. Traite Technique d’Histologie. 2nd ed. Paris: Savy; 1889.

    Google Scholar 

  74. Lieberkuhn. Mikroscop Morph Thierkorp 1883. p. 249.

    Google Scholar 

  75. Schoney L. Uber den ossifications process be: vogeln und die neubildung von rothen blutkorperchen an die ossificationsgrenze. Arch f Mikroskop Anat. 1875;12:242–53.

    Google Scholar 

  76. Czermak N. Vergleichende studiam uber die entwicklung des knochen u knorpelgewebes. Anat Anzeig. 1888;3:470–80.

    Google Scholar 

  77. Leser E. Ueber die histologischen vorgange au der ossificationsgrenze. Arch Klin Chir. 1888;37:511–21.

    Google Scholar 

  78. Loven C. Studier och undersokningar ofver benvafnaden etc. Medicinsk Archiv Carolinsk Inst. 1863;1.

    Google Scholar 

  79. Stieda L. Die Bildung des Knochengewebes. Leipzig: Engelmann; 1872.

    Google Scholar 

  80. Uranossow G. Beitrage zur Lehre von der Entwickelung des Knochengewebes aus Knorpel Dissert. Moscow, Russia (cited by Stieda) 1872.

    Google Scholar 

  81. Levschin L. Zur Entwickelung des Knochengewebes an den Diaphysenenden der Rohrenknochen der Neugeborenen. Bull de l’Acad Imp St. Peters 17:9–13.

    Google Scholar 

  82. Strelzoff ZJ. Ueber die histogenese der knochen. Cent f med wissen. Untersuchungen aus dem pathologischen institut zu Zurich. Herausgeg v. Eberth 1873. p. 274.

    Google Scholar 

  83. Brachet A. Sur la resorption du cartilage. J Int Anat Physiol. 1893;10:393.

    Google Scholar 

  84. Tschistowitsch T. Zur frage von der angeobornen rachitis. Virch Arch f Path Anat u Phys u f Klin Med 1897;148. p. 140–77 and 209–33.

    Google Scholar 

  85. Gerstenfeld LC, Shapiro FD. Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem. 1996;62(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  86. Roach HI, Erenpreisa J, Aigner T. Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis. J Cell Biol. 1995;131(2):483–94.

    Article  PubMed  CAS  Google Scholar 

  87. Prenant A, Maillard L, Bouin P. Traite d’Histologie, vol 2. In: Prenant A, Bouin P, editors. Histologie et Anatomie Microscopique, Paris: Masson et Cie; 1911.

    Google Scholar 

  88. Renaut J. Traite d’Histologie Pratique, vol. I. Paris: Rueff et Cie; 1893.

    Google Scholar 

  89. Testut L. Traite d’Anatomie Humaine, vol. 1. Paris: Octave Dion; 1899.

    Google Scholar 

  90. Maximow AA, Bloom W. A textbook of histology. 4th ed. Philadelphia: WB Saunders; 1943.

    Google Scholar 

  91. Nonidez JF, Windle WF. Textbook of histology. New York: McGraw-Hill; 1949.

    Google Scholar 

  92. Dubreuil G, Baudrimont A. Manuel Theorique et Pratique d’Histologie 4th edn. Paris: Vigot Freres.

    Google Scholar 

  93. Ham AW, Cormack DH. Histology. 8th ed. Philadelphia: JB Lippincott; 1979.

    Google Scholar 

  94. Krstic RV. General histology of the mammal. Berlin: Springer; 1985.

    Book  Google Scholar 

  95. Kalayjian DB, Cooper RR. Osteogenesis of the epiphysis: a light and electron microscopic study. Clin Orthop Relat Res. 1972;85:242–56.

    Article  PubMed  CAS  Google Scholar 

  96. Dwek JR, Shapiro F, Laor T, Barnewolt CE, Jaramillo D. Normal gadolinium-enhanced MR images of the developing appendicular skeleton: Part 2 Epiphyseal and metaphyseal marrow. AJR. 1997;169(1):191–6.

    Article  PubMed  CAS  Google Scholar 

  97. Rivas R, Shapiro F. Structural stages in the development of the long bones and epiphyses: a study in the New Zealand white rabbit. J Bone Joint Surg Am. 2002;84-A(1):85–100.

    PubMed  Google Scholar 

  98. Brighton CT. Structure and function of the growth plate. Clin Orthop Rel Res. 1978;136:22–32.

    Google Scholar 

  99. Iannotti JP. Growth plate physiology and pathology. Orthop Clin North Am. 1990;21(1):1–17.

    PubMed  CAS  Google Scholar 

  100. Robertson WW. Newest knowledge of the growth plate. Clin Orthop Rel Res. 1990;253:270–8.

    Google Scholar 

  101. Trueta J, Morgan JD. The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Joint Surg Br. 1960;42-B:97–109.

    PubMed  CAS  Google Scholar 

  102. Brighton CT, Heppenstall RB. Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits. J Bone Joint Surg Am. 1971;53(4):719–28.

    PubMed  CAS  Google Scholar 

  103. Brighton CT, Magnuson PB, Iannotti JP. Growth and development of bone: the growth plate and its abnormalities. In: Instructional Course Lectures, Rosemont, American Academy of Orthopedic Surgeons 105, 1992.

    Google Scholar 

  104. Buckwalter JA, Mower D, Ungar R, Schaeffer J, Ginsberg B. Morphometric analysis of chondrocyte hypertrophy. J Bone Joint Surg Am. 1986;68(2):243–55.

    PubMed  CAS  Google Scholar 

  105. Cowell HR, Hunziker EB, Rosenberg L. The role of hypertrophic chondrocytes in endochondral ossification and in the development of secondary centers of ossification. J Bone Joint Surg Am. 1987;69(2):159–61.

    PubMed  CAS  Google Scholar 

  106. Farnum CE, Wilsman NJ. Converting a differentiation cascade into longitudinal growth: Stereology and analysis of transgenic animals as tools for understanding growth plate function. Curr Opin Orthop. 2001;12:428–33.

    Article  Google Scholar 

  107. Holtrop ME. The ultrastructure of the epiphyseal plate. I. The flattened chondrocyte. Calcif Tissue Res. 1972;9(2):131–9.

    Article  PubMed  CAS  Google Scholar 

  108. Holtrop ME. The ultrastructure of the epiphyseal plate. II. The hypertrophic chondrocyte. Calcif Tissue Res. 1972;9(2):140–51.

    Article  PubMed  CAS  Google Scholar 

  109. Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech. 1994;28(6):505–19.

    Article  PubMed  CAS  Google Scholar 

  110. Hunziker EB, Herrmann W, Schenk RK, Mueller M, Moor H. Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructure–implications for the theories of mineralization and vascular invasion. J Cell Biol. 1984;98(1):267–76.

    Article  PubMed  CAS  Google Scholar 

  111. Hunziker EB, Schenk RK, Cruz-Orive LM. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg Am. 1987;69(2):162–73.

    PubMed  CAS  Google Scholar 

  112. Hunziker EB, Schenk RK. Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J Physiol. 1989;414:55–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Ballock RT, O’Keefe RJ. The biology of the growth plate. J Bone Joint Surg Am. 2003;85-A(4):715–26.

    PubMed  Google Scholar 

  114. Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci. 2000;113(Pt 1):59–69.

    PubMed  CAS  Google Scholar 

  115. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623–8.

    Article  PubMed  CAS  Google Scholar 

  116. Van der Eerden BCJ, Karperien M, Wit JM. Systemic and local regulation of the growth plate. Endocr Rev. 2003;24:782–801.

    Google Scholar 

  117. Wilsman NJ, Farnum CE, Leiferman EM, Fry M, Barreto C. Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res. 1996;14(6):927–36.

    Article  PubMed  CAS  Google Scholar 

  118. Farnum CE, Wilsman NJ. Cellular turnover at the chondro-osseous junction of growth plate cartilage: analysis by serial sections at the light microscopical level. J Orthop Res. 1989;7(5):654–66.

    Article  PubMed  CAS  Google Scholar 

  119. Buckwalter JA, Mower D, Schafer J, Ungar R, Ginsberg B, Moore K. Growth-plate-chondrocyte profiles and their orientation. J Bone Joint Surg Am. 1985;67(6):942–55.

    PubMed  CAS  Google Scholar 

  120. Haynes JS. Immunohistochemical localization of type X collagen in the proximal tibiotarsi of broiler chickens and turkeys. Anat Rec. 1990;227(3):307–13.

    Article  PubMed  CAS  Google Scholar 

  121. Sandell LJ, Sugai JV, Trippel SB. Expression of collagens I, II, X, and XI and aggrecan MRNAs by bovine growth plate chondrocytes in situ. J Orthop Res. 1994;12:1–14.

    Article  PubMed  CAS  Google Scholar 

  122. Schmid TM, Cole AA, Chen O, Bonen DK, Luchene L, Linsenmayer TF. Assembly of type X collagen by hypertrophic chondrocytes. In: Yurchenco PD, Birk DE, Mechan RP, editors. Extracellular matrix assembly and structure. San Diego: Academic Press; 1994. p. 171–206.

    Chapter  Google Scholar 

  123. Holtrop ME. The potencies of the epiphyseal cartilage in endochondral ossfication. Koninkl nederl akademie van wetenschappen—Amsterdam. Proceedings, Series C, vol. 70, No. 1, 1967. p. 21–28.

    Google Scholar 

  124. Holtrop ME. The ultrastructure of the hypertrophic chondrocyte. Isr J Med Sci. 1971;7(3):473–6.

    PubMed  CAS  Google Scholar 

  125. Holtrop ME. Factors influencing the growth rate in endochondral ossification. Koninkl nederl akademie van wetenschappen—Amsterdam. Proceedings, Series C, vol. 70, No 1, 1967. p. 29–30.

    Google Scholar 

  126. Schenk RK, Hunziker EB. Growth plate: histophysiology, cell and matrix turnover. In: Rickets, Glorieux FH, editor. Nestle nutrition workshop series, Vol. 21. New York: Raven Press; 1991. p. 63–76.

    Google Scholar 

  127. Barreto C, Wilsman NJ. Hypertrophic chondrocyte volume and growth rates in avian growth plates. Res Vet Sci. 1994;56(1):33–61.

    Article  Google Scholar 

  128. Breur GJ, Turgai J, Vanenkevort BA, Farnum CE, Wilsman NJ. Stereological and serial section analysis of chondrocytic enlargement in the proximal tibial growth plate of the rat. Anat Rec. 1994;239(3):255–68.

    Article  PubMed  CAS  Google Scholar 

  129. Farnum CE, Wilsman NJ. Morphologic stages of the terminal hypertrophic chondrocyte of growth plate cartilage. Anat Rec. 1987;219(3):221–32.

    Article  PubMed  CAS  Google Scholar 

  130. Aizawa T, Kokubun S, Tanaka Y. Apoptosis and proliferation of growth plate chondrocytes in rabbits. J Bone Joint Surg Br. 1997;79(3):483–6.

    Article  PubMed  CAS  Google Scholar 

  131. Gibson G. Active role of chondrocyte apoptosis in endochondral ossification. Microsc Res Tech. 1998;28:505–19.

    Google Scholar 

  132. Shapiro F, Flynn E, Calicchio ML. Molecular differentiation in epiphyseal and physeal cartilage. Prominent role for gremlin in maintaining hypertrophic chondrocytes in epiphyseal cartilage. Biochem Biophys Res Comm. 2009;390:570–6.

    Article  PubMed  CAS  Google Scholar 

  133. Lacroix P. The organization of bones. London: J and A Churchill; 1951.

    Google Scholar 

  134. Langenskiold A, Videman T, Nevalainen T. Vital staining indicating cell migration towards the periphery in the growth plate. Studies of fibular heads in rabbits. Acta Orthop Scand. 1993;64(6):683–7.

    Article  PubMed  CAS  Google Scholar 

  135. Speer DP. Collagenous architecture of the growth plate and perichondrial ossification groove. J Bone Joint Surg Am. 1982;64(3):399–407.

    PubMed  CAS  Google Scholar 

  136. Solomon L. Diametric growth of the epiphysial plate. J Bone Joint Surg Br. 1966;48(1):170–7.

    PubMed  CAS  Google Scholar 

  137. Tonna EA, Cronkite EP. The periosteum. Autoradiographic studies on cellular proliferation and transformation utilizing tritiated thymidine. Clin Orthop Relat Res. 1963;30:218–33.

    Article  PubMed  CAS  Google Scholar 

  138. Tonna EA. The cellular complement of the skeletal system studied autoradiographically with tritiated thymidine (H3TDR) during growth and aging. J Biophys Biochem Cytol. 1961;9:813–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Hert J. Growth of the epiphyseal plate in circumference. Acta Anat. 1976;82:420–36.

    Article  Google Scholar 

  140. Langenskiold A, Heikel HV, Nevalainen T, Osterman K, Videman T. Regeneration of the growth plate. Acta Anat (Basel). 1989;134(2):113–23.

    Article  PubMed  CAS  Google Scholar 

  141. Rigal WM. The use of tritiated thymidine in studies of chondrogenesis. In: McLean FC, Lacroix P, Buddy AM, editors. Radioisotopes and bone. Oxford: Blackwell Sci Publ; 1962. p. 197–225.

    Google Scholar 

  142. Burkus JK, Ogden JA. Development of the distal femoral epiphysis: a microscopic morphological investigation of the zone of Ranvier. J Pediatr Orthop. 1984;4(6):661–8.

    Article  PubMed  CAS  Google Scholar 

  143. Warwick WT, Wiles P. The growth of periosteum in long bones. Br J Surg. 1934;22:169–74.

    Article  Google Scholar 

  144. Poland J. Traumatic separations of the epiphyses. London: Smith Elder and Company; 1898.

    Google Scholar 

  145. Amamilo SC, Bader DL, Houghton GR. The periosteum in growth plate failure. Clin Orthop Relat Res. 1985;194:293–305.

    PubMed  Google Scholar 

  146. Cadet ER, Gafni RI, McCarthy EF, et al. Mechanisms responsible for longitudinal growth of the cortex: coalescence of trabecular bone into cortical bone. J Bone Joint Surg. 2003;85A:1739–48.

    Google Scholar 

  147. Carvell JE. The relationship of the periosteum to angular deformities of long bones. Experimental operations in rabbits. Clin Orthop Relat Res. 1983;173:262–74.

    PubMed  Google Scholar 

  148. Dimitriou CG, Kapetanos GA, Symeonides PP. The effect of partial periosteal division on growth of the long bones. Clin Orthop Rel Res. 1987;236:265–9.

    Google Scholar 

  149. Hernandez JA, Serrano S, Marinoso ML, et al. Bone growth and modeling changes induced by periosteal stripping in the rat. Clin Orthop Relat Res. 1995;320:211–9.

    PubMed  Google Scholar 

  150. Houghton GR, Rooker GD. The role of the periosteum in bone remodeling and deformity. In: Stokes IA, editor. Mechanical factors and the skeleton. London: John Libbey; 1981. p. 128–32.

    Google Scholar 

  151. Garces GL, Hernandez Hermoso JA. Bone growth after periosteal stripping in rats. Int Orthop. 1991;15(1):49–52.

    Article  PubMed  CAS  Google Scholar 

  152. Haasbeek JF, Rang MC, Blackburn N. Periosteal tether causing angular growth deformity: report of two clinical cases and an experimental model. J Pediatr Orthop. 1995;15(5):677–81.

    Article  PubMed  CAS  Google Scholar 

  153. Havers C. Osteologia nova or some new observations of the bones. London, S Smith; 1691.

    Google Scholar 

  154. Foote JS. A contribution to the comparative histology of the femur. Smithson Contrib Knowl. 1916;35:1–230.

    Google Scholar 

  155. Jaffe HL. The structure of bone. Arch Surg. 1929;19:24–52.

    Article  Google Scholar 

  156. Weidenreich F (1930) Das Knochengewebe. In: Handbuch der Mikroskopischen Anatomie des Menschen. Bone Tissue. In: von Mollendorff W, editor. Manual of human microscopic anatomy, vol. 2, part 2. p. 391–520/Julius Berlin: Springer.

    Google Scholar 

  157. Smith JW. The arrangement of collagen fibres in human secondary osteones. J Bone Joint Surg [Br]. 1960;42:588–605.

    Google Scholar 

  158. Smith JW. Collagen fibre patterns in mammalian bone. J Anat. 1690:94:329–44.

    Google Scholar 

  159. Modis L. Organization of the extracellular matrix: a polarization microscopic approach. Boca Raton, FL, USA: CRC Press; 1991.

    Google Scholar 

  160. Gebhart W. Uber funktionell wichtige Anordungsweisen der feineren und groberen Bauelemente des Wirbeltierknochens. II. Spezieller Teil. I. Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung (On functionally important structures of the finer and coarser building blocks of the vertebrate bone. II. Speical part. The structure of the haversian lamellar system and its functional significance). Roux arch f Entwickl d Organ. 1905;20:187–322.

    Article  Google Scholar 

  161. Petersen H (1930) Die organe der skelettystems. In: Handbuch der Mikroskopischen Anatomie des Menschen (The organs of the skeletal system. In. The Manual of Human Microscopic Anatomy). In: von Mollendorff W, editor. vol. 2, part 2. Julius, Berlin: Spinger, p. 520–678.

    Google Scholar 

  162. Giraud-Guille MM. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int. 1988;42:167–80.

    Article  PubMed  CAS  Google Scholar 

  163. Weiner S, Arad T, Sabanay I, Traub W. Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril array. Bone. 1997;20:509–14.

    Article  PubMed  CAS  Google Scholar 

  164. Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases. 2006;1:1–5.

    Article  PubMed  CAS  Google Scholar 

  165. Bouligand Y, Denefle J-P, Lechaire J-P, Maillard M. Twisted architectures in cell-free assembled collagen gels: study of collagen substrates used for cultures. Biol Cell. 1985;54:143–62.

    Article  PubMed  CAS  Google Scholar 

  166. Cisneros DA, Hung C, Franz CM, Muller DJ. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struc Biol. 2006;154:232–45.

    Article  CAS  Google Scholar 

  167. Kadler KE, Holmes DR, Trotter JA, Chapman JA. Collagen fibril formation. Biochem. 1996;316:1–11.

    Article  CAS  Google Scholar 

  168. Kusuzaki K, Kageyama N, Shinjo H, Takeshita H, Murata H, Hashiguchi S, Ashihara T, Hirasawa Y. Development of bone canliculi during bone repair. Bone. 200;37:655–59.

    Google Scholar 

  169. Bernays A. Die entwicklungsgeschichte des kniegelenkes des menschen, mit bemerkungen uber die gelenke. Zeit f Anat Entwicklung. 1878;4:403–46.

    Google Scholar 

  170. Schulin K. Ueber die entwickelung und weitere ausbildung der gelenke des menschlichen korpers. Archiv Anat Entwick. 1879;240–74.

    Google Scholar 

  171. Kazzander J. Ueber die entwickelung des kniegelenkes. Archiv Anat Entwick.1894;161–76.

    Google Scholar 

  172. Hesser C. Beitrag zur kenntnis der gelenkentwicklung beim menschen. Gegenbaurs morphologisches jahrbuch. Zeit f Anat Entwicklungs. 1926;55:489–567.

    Google Scholar 

  173. Retterer E. Sur le mode de developpement des cavites articulaires chez les mammiferes. CR Hebd Soc Biol Serie. 1886;8:45–8.

    Google Scholar 

  174. Retterer E. Sur le mode de formation des articulations. CR Hebd Soc Biol 1. 1894;10:862–5.

    Google Scholar 

  175. Retterer E. Ebauche squelettogene des membres et developpement des articulations. J de l’ Anat Physiol. 1902;38(473–509):580–623.

    Google Scholar 

  176. Haines RW. The development of joints. J Anat. 1947;81:33–55.

    PubMed Central  Google Scholar 

  177. Rhinelander FW. The normal microcirculation of diaphyseal cortex and its response to fracture. J Bone Surg [Am]. 1968;50:784–800.

    CAS  PubMed  Google Scholar 

  178. Skawina A, Litwin JA, Gorczya J, Miodonski AJ. The vascular system of human fetal long bones: a scanning electron microscope study of corrosion casts. J Anat. 1994;185:369–76.

    PubMed Central  PubMed  Google Scholar 

  179. Haines RW. Cartilage canals. J Anat. 1933;68:45–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  180. Shapiro F. Epiphyseal and physeal cartilage vascularization : a light microscopic and autoradiographic study of cartilage canals in newborn and young postnatal rabbit bone. Anat Rec. 1998;252:140–8.

    Article  PubMed  CAS  Google Scholar 

  181. Dale GG, Harris WR. Prognosis of epiphyseal separation - an experimental study. J Bone Joint Surg. 1958;40B:116–22.

    Google Scholar 

  182. Brookes M. The vascularization of long bones in the human foetus. J Anat. 1958;92:261–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  183. O’Hara JP III, Dommisse GF. Extraosseous blood supply to the neonatal femoral head. Clin Orthop Rel Res. 1983;174:293–7.

    Google Scholar 

  184. Trueta J, Little K. The vascular contribution to osteogenesis. II. Studies with the electron microscope. J Bone Joint Surg. 1960;42B:367–76.

    Google Scholar 

  185. Trueta J, Amato VP. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg. 1960;42B:571–87.

    Google Scholar 

  186. Irving MH. The blood supply of the growth cartilage in young rats. J Anat. 1964;98:631–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  187. Haas SL. The relation of the blood supply to the longitudinal growth of bone. Am J Orthop Surg. 1917;15:157–71 and 305–16.

    Google Scholar 

  188. Haas SL. The relation of the blood supply to the longitudinal growth of bone. Am J Orthop Surg. 1917;15:305–16.

    Google Scholar 

  189. Brashear RH. Epiphyseal avascular necrosis and its relation to longitudinal bone growth. J Bone Joint Surg. 1963;45A:1423–38.

    Google Scholar 

  190. Harris HA. The vascular supply of bone, with special reference to the epiphyseal cartilage. J Anat. 1929;64:3–4.

    PubMed Central  PubMed  CAS  Google Scholar 

  191. Morgan JD. Blood supply of growing rabbit’s tibia. J Bone Joint Surg Br. 1959;41:185–203.

    PubMed  Google Scholar 

  192. Hunter J. Experiments and observations on the growth of bones, from the papers of the late Mr. Hunter. In: James F, editor. The works of John Hunter with notes. Palmer, vol. iv, 1835, London, p. 315–18.

    Google Scholar 

  193. Arsenault AL. Microvascular organization at the epiphyseal-metaphyseal junction of growing rats. J Bone Miner Res. 1987;2:143–9.

    Article  PubMed  CAS  Google Scholar 

  194. Hunter WL, Arsenault AL. Vascular invasion of the epiphyseal growth plate: analysis of metaphyseal capillary ultrastructure and growth dynamics. Anat Rec. 1990;227:223–31.

    Article  PubMed  CAS  Google Scholar 

  195. Barnewolt CE, Shapiro F, Jaramillo D. Normal gadolinium-enhanced MR images of the developing appendicular skeleton: Part 1. Cartilaginous epiphysis and physis. AJR. 1997;169:183–9.

    Article  PubMed  CAS  Google Scholar 

  196. Burkus JK, Ganey TM, Ogden JA. Development of the cartilage canals and the secondary center of ossification in the distal chondroepiphysis of the prenatal human femur. Yale J Biol Med. 1993;66:193–202.

    PubMed Central  PubMed  CAS  Google Scholar 

  197. Chappard D, Alexandre C, Chol R, Riffat G. Less canaux intrachondraux: Histogenese, anatomie et histophysiologic de la vascularisation cartilagineuse du foetus humain. Lyon Med. 1983;249:417–28.

    Google Scholar 

  198. Chappard D, Alexandre C, Riffat G. Uncalcified cartilage resorption in human fetal cartilage canals. Tissue Cell. 1986;18:701–7.

    Article  PubMed  CAS  Google Scholar 

  199. Cole AA, Wezeman FH. Morphometric analysis of cartilage canals in the developing mouse epiphysis. Acta Anat. 1987;128:93–7.

    Article  PubMed  CAS  Google Scholar 

  200. Delgado-Baeza E, Gimenez-Ribotta M, Miralles-Flores C, Nieto-Chaguaceda A, Santos-Alvarez I. Morphogenesis of cartilage canals: experimental approach in the rat tibia. Acta Anat. 1991;142:132–7.

    Article  PubMed  CAS  Google Scholar 

  201. Delgado-Baeza E, Gimenez-Ribotta M, Miralles-Flores C, Nieto-Chaguaceda A, Santos-Alvarez I. Relationship between the cartilage canal and the perichondrium in the rat proximal tibial epiphysis. Acta Anat. 1991;141:31–5.

    Article  PubMed  CAS  Google Scholar 

  202. Ganey TM, Love SM, Ogden JA. Development of vascularization in the chondroepiphysis of the rabbit. J Orthop Res. 1992;10:496–510.

    Article  PubMed  CAS  Google Scholar 

  203. Haraldsson S. The vascular pattern of a growing and full grown human epiphysis. Acta Anat. 1962;48:156–67.

    Article  PubMed  CAS  Google Scholar 

  204. Hayashi K. Three-dimensional organization of the cartilage canal—A scanning electron-microscopic study by vascular cast of the rabbit’s femoral head. Jpn Orthop. 1992;66:548–59.

    CAS  Google Scholar 

  205. Hintzsche E. Untersuchungen an stutzgeweben. 1. Ueber die bedentung der gefasskanale im knorpel nach befunden an distalen ende des menschlichen schenkelbeines. Zeit f Mikroskop Anat Forsch. 1928;12:62–126.

    Google Scholar 

  206. Hunt CD, Ollerich DA, Nielsen FH. Morphology of the perforating cartilage canals in the proximal tibial growth plate of the chick. Anat Rec. 1979;194:143–58.

    Article  PubMed  CAS  Google Scholar 

  207. Hurrell DJ. The vascularisation of cartilage. J Anat. 1934;69:47–61.

    PubMed Central  PubMed  CAS  Google Scholar 

  208. Jaramillo D, Vilegas-Medina OL, Doty DK, Dwek JR, Ransil BJ, Mulkern RV, Shapiro F. Gadolinium-enhanced MR imaging demonstrates abduction-caused hip ischemia and its reversal in piglets. Pediatr Radiol. 1995;25:578–87.

    Article  PubMed  CAS  Google Scholar 

  209. Kugler JH, Tomlinson A, Wagstaff A, Ward SM. The role of cartilage canals in the formation of secondary centres of ossification. J Anat. 1979;129:493–506.

    PubMed Central  PubMed  CAS  Google Scholar 

  210. Levene C. The patterns of cartilage canals. J Anat. 1964;98:515–38.

    PubMed Central  PubMed  CAS  Google Scholar 

  211. Lufti AM. Mode of growth, fate and functions of cartilage canals. J Anat. 1970;106:135–45.

    Google Scholar 

  212. Skawina A, Litwin JA, Gorczyca J, Miodonski AJ. Blood vessels in epiphyseal cartilage of human fetal femoral bone: a scanning electron microscopic study of corrosion casts. Anat Embryol. 1994;189:457–62.

    Article  PubMed  CAS  Google Scholar 

  213. Stockwell RA. The ultrastructure of cartilage canals and the surrounding cartilage in the sheep fetus. J Anat. 1971;109:397–410.

    PubMed Central  PubMed  CAS  Google Scholar 

  214. Wang YC. Intrachondral microcirculation and cartilage growth. Cartilage and bone development during the embryonic stage. Chin Med J. 1975;1:449–60.

    Google Scholar 

  215. Watermann R. Gefassdurchtrittsoffnungen und arthrose am oberschenkel. Z Orthrop. 1964;98:492–508.

    CAS  Google Scholar 

  216. Watermann R. Gefassbedingle erhebungen und einsenkungen an den schichtgrenzen der kniegelenksnahen wachstumzonen. Z Orthop. 1960;93:565–79.

    PubMed  CAS  Google Scholar 

  217. Watermann R. Gefassversorgung der distalen femurepiphyse. Z Orthop. 1966;101:247–57.

    CAS  Google Scholar 

  218. Wilsman NJ, Van Sickle DC. The relationship of cartilage canals to the initial osteogenesis of secondary centers of ossification. Anat Rec. 1970;168:381–92.

    Article  PubMed  CAS  Google Scholar 

  219. Wilsman NJ, Van Sickle DC. Cartilage canals, their morphology and distribution. Anat Rec. 1972;173:79–94.

    Article  PubMed  CAS  Google Scholar 

  220. Floyd WE, Zaleske DJ, Schiller AL, Trahan C, Mankin HJ. Vascular events associated with the appearance of the secondary center of ossification in the murine distal femoral epiphysis. J Bone Joint Surg. 1987;69A:185–90.

    Google Scholar 

  221. Becks H, Simpson ME, Evans HM. Ossification at the proximal tibial epiphysis in the rat. Anat Rec. 1945;42:109–19.

    Article  Google Scholar 

  222. Bardeen CR. Studies of the development of the human skeleton. The development of the skeleton of the posterior limb. Am J Anat. 1905;4:279–302.

    Google Scholar 

  223. Tilling G. The vascular anatomy of long bones; a radiological and histological study. Acta Radiol Suppl. 1958;161:1–107.

    PubMed  CAS  Google Scholar 

  224. Parsons FG. On pressure epiphyses. J Anat Physiol. 1905;39:402–12.

    PubMed Central  PubMed  CAS  Google Scholar 

  225. Mankin HJ. Localization of tritiated thymidine in articular cartilage of rabbits. I. Growth in immature cartilage. J Bone Joint Surg. 1962;44A:682–8.

    CAS  Google Scholar 

  226. Mankin HJ. Localization of tritiated thymidine in articular cartilage of rabbits. III. Mature articular cartilage. J Bone Joint Surg. 1963;45A:529–40.

    Google Scholar 

  227. McCarthy SM, Ogden JA. Radiology of postnatal skeletal development V. Distal humerus. Skelet Radiol. 1982;7:239–49.

    Article  CAS  Google Scholar 

  228. Benninghoff A. Form und bau der gelenkknorpel in ihren beziehungen zur funktion. Zwieter teil: Der aufbau des gelenkknorpels in seinen beziehungen zur funktion. Zeit f Zellforsch u Mikroskop Anat. 1925;2:783–862.

    Article  Google Scholar 

  229. Speer DP, Dahners L. The collagenous architecture of articular cartilage. Clin Orthop Rel Res. 1979;139:267–75.

    Google Scholar 

  230. McKibbin B, Holdsworth FW. The nutrition of immature joint cartilage in the lamb. J Bone Joint Surg. 1966;48B:793–803.

    Google Scholar 

  231. Hodge JA, McKibbin B. The nutrition of mature and immature cartilage in rabbits. An autoradiographic study. J Bone Joint Surg. 1969;51B:140–7.

    Google Scholar 

  232. Reno PL, McBurney DL, Lovejoy CO, Horton WE Jr. Ossification of the mouse metatarsal: differentiation and proliferation in the presence/absence of a defined growth plate. Anat Rec (A). 2006;288:104–18.

    Article  PubMed  Google Scholar 

  233. Saunders JW. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool. 1948;108:363–403.

    Article  PubMed  Google Scholar 

  234. Gould SJ. Ontogeny and phylogeny. Cambridge MA: Harvard University Press; 1977.

    Google Scholar 

  235. Waddington CH. The epigenotype. Endeavour 1942;18–20. (Reprinted in: Int J Epidemiol 2012;41:10–13).

    Google Scholar 

  236. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscapre takes shape. Cell. 2007;128:635–8.

    Article  PubMed  CAS  Google Scholar 

  237. vanSpeybroeck L. From epigenesis to epigenetics. The case of CH Waddington. Ann NY Acand Sci. 2002;981:61–81.

    Article  Google Scholar 

  238. Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563–5.

    Article  Google Scholar 

  239. Waddington CH. The strategy of the genes; a discussion of some aspects of theoretical biology. London: Allen and Unwin; 1957.

    Google Scholar 

  240. Siegal ML, Bergman A. Waddington’s canalization revisitsed: developmental stability and evolution. PNAS. 2002;99:10528–32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  241. Shi Y. Taking epigenetics center stage. Cell. 2007;128:639–40.

    Article  Google Scholar 

  242. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;249:457–63.

    Article  CAS  Google Scholar 

  243. Felsenfeld G. A brief history of epigenetics. Cold Spring Harb Perspect Biol. 2014;6:a018200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Tickle C, Eichele G. Vertebrate limb development. Ann Rev Cell Biol. 1994;10:121–52.

    Article  PubMed  CAS  Google Scholar 

  245. Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell. 1997;90:979–90.

    Article  PubMed  CAS  Google Scholar 

  246. Held LI Jr. Models for Embryonic Periodicity. Basel: Karger; 1994.

    Google Scholar 

  247. Wolpert L. One hundred years of positional information. Trends Genet. 1996;12:359–62.

    Article  PubMed  CAS  Google Scholar 

  248. Summerbell D, Lewis JH, Wolpert L. Positional information in chick limb morphogenesis. Nature. 1973;244:492–6.

    Article  PubMed  CAS  Google Scholar 

  249. French V, Bryant PJ, Bryant SV. Pattern recognition in epimorphic fields. Science. 1976;193:969–81.

    Article  PubMed  CAS  Google Scholar 

  250. Bryant PJ. The polar coordinate model goes molecular. Science. 1993;259:471–2.

    Article  PubMed  CAS  Google Scholar 

  251. Sun X, Mariani FV, Martin GR. Functions of GFG signaling from the apical ectodermal ridge in limb development. Nature. 2002;418:501–8.

    Article  PubMed  CAS  Google Scholar 

  252. Dudley AT, Ros MA, Tabin CJ. A re-examination of proximodistal patterning during vertebrate limb development. Nature. 2002;418:539–44.

    Article  PubMed  CAS  Google Scholar 

  253. Duboule D. Making progress with limb models. Nature. 2002;418:492–3.

    Article  PubMed  CAS  Google Scholar 

  254. Tabin C, Wolpert L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev. 2007-21:1433-1442.

    Google Scholar 

  255. Turing AM. The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci. 1952;237:37–72.

    Article  Google Scholar 

  256. Tompkins N, Li N, Girabawe C, Heymann M, et al. Testing Turing’s theory of morphogenesis in chemical cells. PNAS. 2014;11:4397–402.

    Article  CAS  Google Scholar 

  257. Meinhardt H. Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface Focus. 2012;2:407–16.

    Article  PubMed Central  PubMed  Google Scholar 

  258. Zaikin AN, Zhabotinsky AM. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature. 1970;225:535–7.

    Article  PubMed  CAS  Google Scholar 

  259. Belmonte AL, Ouyang Q, Flesselles J-M. Experimental survey of spinal dynamics in the belousov-Zhabotinsky reaction. J Phys II France. 1997;7:1425–68.

    Article  CAS  Google Scholar 

  260. Winfree AT. When time breaks down. Princeton NJ: Princeton University Press; 1987.

    Google Scholar 

  261. Winfree AT. Spiral waves of chemical activity. Science. 1972;175:634–6.

    Article  PubMed  CAS  Google Scholar 

  262. Misteli T. The concept of self-organization in cellular architecture. J Cell Biol. 2001;155:181–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  263. Karsenti E. Self-organization in cell biology: a brief history. Nature Rev Mol Cell Biol. 2008;9:255–62.

    Article  CAS  Google Scholar 

  264. Cohn MJ, Tickle C. Limbs: a model for pattern formation within the vertebrate body plan. Trends Genet. 1996;12:253–7.

    Article  PubMed  CAS  Google Scholar 

  265. Echelard Y, Epstein DJ, St. Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993;75:1417–30.

    Article  PubMed  CAS  Google Scholar 

  266. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R. Toward a molecular understanding of skeletal development. Cell. 1995;80:371–8.

    Article  PubMed  CAS  Google Scholar 

  267. Fietz MJ, Concordet J-P, Barbosa R, Johnson R, Krauss S, McMahon AP, Tabin C, Ingham PW. The hedgehog gene family in drosophila and vertebrate development. Development. 1994;Sup:43–51.

    Google Scholar 

  268. Helms JA, Kim CH, Eichele G, Thaller C. Retinoic acid signaling is required during early chick limb development. Development. 1996;122:1385–94.

    PubMed  CAS  Google Scholar 

  269. Hogan BLM, Blessing M, Winnier GE, Suzuki N, Jones CM. Growth factors in development: the role of TGF-b related polypeptide signaling molecules in embryogenesis. Development. 1994;Sup:53–60.

    Google Scholar 

  270. Jessell TM, Melton DA. Diffusible factors in vertebrate embryonic induction. Cell. 1992;68:257–70.

    Article  PubMed  CAS  Google Scholar 

  271. Kraus S, Concordet J-P, Ingham PW. A functionally conserved homolog of the drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell. 1993;75:1431–44.

    Article  Google Scholar 

  272. Krumlauf R. Hox genes in vertebrate development. Cell. 1994;78:191–201.

    Article  PubMed  CAS  Google Scholar 

  273. Melton DA. Pattern formation during animal development. Science. 1991;252:234–41.

    Article  PubMed  CAS  Google Scholar 

  274. Morgan BA, Tabin C. Hox genes and growth: early and late roles in limb bud morphogenesis. Development. 1994;Sup:181–86.

    Google Scholar 

  275. Nelson CE, Morgan BA, Burke AC, Laufer E, DiMambro E, Murtaugh LC, Gonzales E, Tessarollo L, Parada LF, Tabin C. Analysis of hox gene expression in the chick limb bud. Development. 1996;122:1449–66.

    PubMed  CAS  Google Scholar 

  276. Riddle RD, Johnson RL, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 1993;75:1401–16.

    Article  PubMed  CAS  Google Scholar 

  277. Schwabe JWR, Rodriguez-Esteran C, Belmonte JCI. Limbs are moving: where are they going? Trends Genet. 1998;14:229–35.

    Article  PubMed  CAS  Google Scholar 

  278. Tabin C. The initiation of the limb bud: growth factors, hox genes, and retinoids. Cell. 1995;80:671–4.

    Article  PubMed  CAS  Google Scholar 

  279. Thaller C, Eichele G. Identification and spatial distribution of retinoids in the development chick limb bud. Nature. 1987;327:625–8.

    Article  PubMed  CAS  Google Scholar 

  280. Towers M, Tickle C. Growing models of vertebrate limb development. Development. 2009;136:179–90.

    Article  PubMed  CAS  Google Scholar 

  281. Benazet J-D, Zeller R. Vertebrate limb development: Moving from classival morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb Perspect Biol. 2009;1:1a001339.

    Article  CAS  Google Scholar 

  282. Niswander L. Growth factor interaction in limb development. Ann NY Acad Sci. 1996;785:23–6.

    Article  PubMed  CAS  Google Scholar 

  283. Parr BA, McMahon AP. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature. 1995;374:350–3.

    Article  PubMed  CAS  Google Scholar 

  284. Yang Y, Niswander L. Interaction between the signaling molecules Wnt-7a and Shh during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell. 1995;80:939–47.

    Article  PubMed  CAS  Google Scholar 

  285. Verhyden JM, Sun X. An Fgf/gremlin inhibitory feedback loop triggers termination bud outgrowth. Nature. 2008;242:638–41.

    Article  CAS  Google Scholar 

  286. Gaunt SJ. Expression patterns of mouse hox genes: clues to an understanding of developmental and evolutionary strategies. BioEssays. 1991;13:505–13.

    Article  PubMed  CAS  Google Scholar 

  287. Krumlauf R. Evolution of the vertebrate hox homeobox genes. BioEssays. 1992;14:245–52.

    Article  PubMed  CAS  Google Scholar 

  288. Scott MP. Vertebrate homeobox gene nomenclature. Cell. 1992;71:551–3.

    Article  PubMed  CAS  Google Scholar 

  289. Duboule D. The vertebrate limb: a model system to study the hox/hom gene network druing development and evolution. BioEssays. 1992;14:375–84.

    Article  PubMed  CAS  Google Scholar 

  290. Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 2003;301:363–7.

    Article  PubMed  CAS  Google Scholar 

  291. Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homobox genes. BMC Biology. 2007;5:47,1741-7007-5-47.

    Google Scholar 

  292. Adams SL, Cohen AJ, Lassova L. Integration of signaling pathways regulating chondrocyte differentiation during endochondral bone formation. J Cell Physiol. 2007;213:635–41.

    Article  PubMed  CAS  Google Scholar 

  293. Iwamoto M, Yagami K, Shapiro IM, Leboy PS, Adams SL, Pacifici M. Retinoic acid is a major regulator of chondrocyte maturation and matrix mineralization. Microsc Res Tech. 1994;28:483–91.

    Article  PubMed  CAS  Google Scholar 

  294. Bi W, Deng JM, Zhang Z, Behringer RR, deCrombrugghe B. Sox9 is required for cartilage formation. Nature Genet. 1999;22:85–9.

    Article  PubMed  CAS  Google Scholar 

  295. deCrombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanism in the pathways of cartilage and bone formation. Curr Op Cell Biol. 2001;13:721–7.

    Article  CAS  Google Scholar 

  296. Lefebvre V, Smits P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res (Part C). Embryo Today. 2005;75:200–12.

    PubMed  CAS  Google Scholar 

  297. Lefebvre V, Li P, deCrombrugghe B. A new long form of Sox 5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998;17:5718–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  298. Dy P, Smits P, Silvester A, Penzo-Mendez A, et al. Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage. Dev Biol. 2010;341:346–59.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  299. Hattori T, Miller C, Gebhard S, Bauer E, Pausch F, Schlund B, et al. Sox9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development. 2010;137:901–11.

    Article  PubMed  CAS  Google Scholar 

  300. Martinez-Sanchez A, Dudek KA, Murphy CL. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator Sox9 by micro RNA-145 (miRNA-145). J Biol Chem. 2012;287:916–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  301. Leboy PS, Grasso-Knight G, D’Angelo M et al. SMAD-Runx Interactions during chondrocyte maturation. J Bone Joint Surg Am. 2001;83 (Suppl 1):S1-15 to S1-22.

    Google Scholar 

  302. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LHK, Ho C, Mulligan RC, Abou-Samra A-B, Juppner H, Segre GV, Kronenberg HM. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996;273:663–6.

    Article  PubMed  CAS  Google Scholar 

  303. Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998;71:65–76.

    Article  PubMed  CAS  Google Scholar 

  304. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.

    Article  PubMed  CAS  Google Scholar 

  305. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13:2072–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  306. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273:613–22.

    Article  PubMed  CAS  Google Scholar 

  307. Niswander L, Tickle C, Vogel A, Booth I, Martin GR. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell. 1993;75:579–87.

    Google Scholar 

  308. Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn. 2008;237:18–27.

    Article  PubMed  CAS  Google Scholar 

  309. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001;2(3):reviews.

    Google Scholar 

  310. Yun Y-R, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010;. doi:10.4061/2010/218142.

    PubMed Central  PubMed  Google Scholar 

  311. Cohn MJ, Izpisua-Belmonte JC, Abud H, Heath JK, Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell. 1995;80:739–46.

    Article  PubMed  CAS  Google Scholar 

  312. Crossley PH, Minowada G, MacArthur CA, Martin GR. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell. 1996;84:127–36.

    Article  PubMed  CAS  Google Scholar 

  313. Behr B, Leucht P, Longaker MT, Quarto N. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. PNAS. 2010;107:11853–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  314. vanAmerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136:3205–14.

    Article  CAS  Google Scholar 

  315. Hartmann C. Skeletal development-Wnts are in control. Mol Cells. 2007;24:177–84.

    PubMed  CAS  Google Scholar 

  316. Day TF, Yang Y. Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am. 2008;90(Suppl 1):19–24.

    Article  PubMed  Google Scholar 

  317. Kramer I, Halleux C, Keller H, Pegurri M, et al. Osteocyte Wnt/β- Catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30:3071–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  318. Baron R, Kneissel M. Wnt signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92.

    Article  PubMed  CAS  Google Scholar 

  319. Hartmann C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000;127:3141–59.

    PubMed  CAS  Google Scholar 

  320. Spater D, Hill TP, O’Sullivan JR, Gruber M, Conner DA, Hartmann C. Wnt 9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006;133:3039–49.

    Article  PubMed  CAS  Google Scholar 

  321. Kingsley DM. The TGFβ superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994;8:133–46.

    Article  PubMed  CAS  Google Scholar 

  322. Wharton K. Derynck. TGFβ family signaling: novel insights in development and disease. Development. 2009;136:3691–7.

    Article  PubMed  CAS  Google Scholar 

  323. Thorp BH, Anderson I, Jakowlew SB. Transforming growth factor-β1, -β2, and -β3 in cartilage and bone cells during endochondral ossification in the chick. Development. 1992;114:907–11.

    PubMed  CAS  Google Scholar 

  324. Ballock T, Heydemann A, Wakefield LM, Flanders KC, Roberts A, Sporn MB. TGF-β1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev Biol. 1993;158:414–29.

    Article  PubMed  CAS  Google Scholar 

  325. Wrana JL. Signaling by the TGFβ superfamily. Cold Spring Harb Perspect Biol. 2013;5:a01197.

    Article  CAS  Google Scholar 

  326. Horbelt D, Derkins A, Knaus P. A portrait of transforming growth factor β superfamily signaling: background matters. Int J Biochem Cell Biol. 2012;44:469–74.

    Article  PubMed  CAS  Google Scholar 

  327. Massague J. TGFβ signaling in context. Nature Rev Mol Cell Biol. 2012;13:616–30.

    Article  CAS  Google Scholar 

  328. Reddi AH, Cunningham NS. Initiation and promotion of bone differentiation by bone morphogenetic proteins. J Bone Miner Res. 1993;8:499–502.

    Google Scholar 

  329. Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem. 2004;93:93–103.

    Article  PubMed  CAS  Google Scholar 

  330. Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development. 2006;133:4667–78.

    Article  PubMed  CAS  Google Scholar 

  331. Miyazono K, Kamiya Y, Morikawa M. Bonemorphogenetic protein receptors and signal transduction. J Biochem. 2010;147:35–51.

    Article  PubMed  CAS  Google Scholar 

  332. Bradgon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23:609–20.

    Article  CAS  Google Scholar 

  333. Eshkar-Oren I, Vuikov SV, Salameh S, Krief S, Oh CD, et al. The forming limb skeleton served as signaling center for limb vasculature patterning via regulation of VEGF. Development. 2009;136:1263–72.

    Article  PubMed  CAS  Google Scholar 

  334. Duong T, Koltowska K, Pichol-Thievend C, LeGuen L, et al. VEGFD regulates blood vascular development by modulating Sox 18 activity. Blood. 2014;123:1102–12.

    Article  PubMed  CAS  Google Scholar 

  335. Patel-Hett S, D’Amore PA. Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol. 2011;55:353–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  336. Maes C. Role and regulation of vascularization processes in endochondral bones. Calcif Tissue Int. 2013;92:307–23.

    Article  PubMed  CAS  Google Scholar 

  337. Buxton P, Edwards C, Archer CW, Francis-West P. Growth differentiation factor-5 (GDF-5) and skeletal development. J Bone Joint Surg Am. 2001;83:(Suppl 1):S1-23 to S1-30.

    Google Scholar 

  338. Kan A, Ikeda T, Fukai A, Nakagawa T, et al. Sox 11 contributes to the regulation of GDF5 in joint maintenance. BMC Dev Biol. 2013;13:4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  339. Kadler KE, Baldock C, Bella J, Boot-Handford RP. Collagens at a glance. J Cell Sci. 2007;120:1955–8.

    Article  PubMed  CAS  Google Scholar 

  340. Bruckner P, van der Rest M. Structure and function of cartilage collagens. Microsc Res Tech. 1994;28:378–84.

    Article  PubMed  CAS  Google Scholar 

  341. Eyre DR. Collagen: molecular diversity in the body’s protein scaffold. Science. 1980;207:1315–22.

    Article  PubMed  CAS  Google Scholar 

  342. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders. New Engl J Med. 1979;301:13–23.

    Article  PubMed  CAS  Google Scholar 

  343. Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders. New Engl J Med. 1979;301:77–85.

    Article  PubMed  CAS  Google Scholar 

  344. Eyre DR, Wu J-J. Collagen cross-links. Top Curr Chem. 2005;247:207–29.

    CAS  Google Scholar 

  345. Knott L, Baily AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998;22:181–7.

    Article  PubMed  CAS  Google Scholar 

  346. Prockop DJ. Mutations in collagen genes as a cause of connective-tissue diseases. New Engl J Med. 1992;326:540–6.

    Article  PubMed  CAS  Google Scholar 

  347. Glimcher MJ. Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec. 1989;224:139–53.

    Article  PubMed  CAS  Google Scholar 

  348. Prockop WJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Ann Rev Biochem. 1995;64:403–34.

    Article  PubMed  CAS  Google Scholar 

  349. Van der Rest M, Garrone R. Collagen family of proteins. FASEB J. 1991;5:2814–23.

    PubMed  Google Scholar 

  350. Brewton RG, Mayne R. Heterotypic type II, IX fibrils: comparison of vitreous and cartilage forms. In: Yurchenco PD, Birk DE, Mecham RP, editors. Extracellular matrix assembly and structure. San Diego: Academic Press; 1994. p. 129–70.

    Chapter  Google Scholar 

  351. Francomano CA. Key role for a minor collagen. Nat Genet. 1995;9:6–8.

    Article  PubMed  CAS  Google Scholar 

  352. Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Brucker P. Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol. 1989;108:191–7.

    Article  PubMed  CAS  Google Scholar 

  353. Wu J-J, Woods PE, Eyre DR. Identification of cross linking sites in bovine cartilage types IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem. 1992;267:23007–14.

    PubMed  CAS  Google Scholar 

  354. Halfter W, Dong S, Schurer B, Cole GJ. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem. 1998;273:25404–12.

    Article  PubMed  CAS  Google Scholar 

  355. Sasaki T, Fukai N, Mann K, Gohring W, Olsen BR, Rimpl R. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing of the angiogenesis inhibitor endostatin. EMBO J. 1998;17:4249–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  356. Eyre DR, Apon S, Wu JJ, Ericsson LH, Walsh KA. Collagen type IX: Evidence for covalent linkages to type II collagen in cartilage. FEBS Lett. 1987;220(337):341.

    Google Scholar 

  357. Kulyk WM, Coelho CND, Kosher RA. Type IX collagen gene expression during limb cartilage differentiation. Matrix. 1991;11:282–8.

    Article  PubMed  CAS  Google Scholar 

  358. McCormick D, Van Der Rest M, Goodship J, Lozano G, Ninomiya Y, Olsen BR. Structure of the glycosaminoglycan domain in the type IX collagen proteoglycan. Proc Natl Acad Sci USA. 1987;84:4044–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  359. Watt SL, Lunstrum GP, McDonough AM, Keene DR, Burgeson RE, Morris NP. Characterization of collagen types XII and XIV from fetal bovine cartilage. J Biol Chem. 1992;267:10093–20099.

    Google Scholar 

  360. Poole AR, Pidoux I. Immunoelectron microscope studies of type X collagen in endochondral ossification. J Cell Biol. 1989;190:2547–54.

    Article  Google Scholar 

  361. Schmid TM, Linsenmayer TF. Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Dev Biol. 1985;107:373–81.

    Article  PubMed  CAS  Google Scholar 

  362. Buckwalter JA. Proteoglycan structure in calcifying cartilage. Clin Orthop Rel Res. 1983;172:207–32.

    CAS  Google Scholar 

  363. Buckwalter JA, Hunziker E, Rosenberg L, Coutts R, Adams M, Eyre D. Articular cartilage: composition and structure. In: Woo SL-Y, Buckwalter JA, editors. Injury and repair of the musculoskeletal soft tissues. Park Ridge, Illinois: American Academy of Orthopaedic Surgeons; 1987. p. 405–25.

    Google Scholar 

  364. Buckwalter JA, Rosenberg LC, Ungar R. Changes in proteoglycan aggregates during cartilage mineralization. Calcif Tissue Int. 1987;41:228–36.

    Article  PubMed  CAS  Google Scholar 

  365. Buckwalter JA, Roughley PJ, Rosenberg LC. Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microsc Res Tech. 1994;28:398–408.

    Article  PubMed  CAS  Google Scholar 

  366. Mundlos S, Meyer R, Yamada Y, Zabel B. Distribution of cartilage proteoglycan (aggrecan) core protein and link protein gene expression during human skeletal development. Matrix. 1991;11:339–46.

    Article  PubMed  CAS  Google Scholar 

  367. Poole AR. Proteoglycans in health and disease: structures and functions. Biochem J. 1986;236:1–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  368. Poole AR, Matsui Y, Hinek A, Lee ER. Cartilage macromolecules and the calcification of cartilage matrix. Anat Rec. 1989;224:167–79.

    Article  PubMed  CAS  Google Scholar 

  369. Rosenberg L (1989) Structure and function of proteoglycans. In: Arthritis and Allied Conditions. In: McCarty DJ A textbook of rheumatology. 11th edn. Philadelphia: Lea and Febiger, p. 240–55.

    Google Scholar 

  370. Roughley PJ, Eunicer RL. Lee ER Cartilage proteoglycans: structure and potential functions. Microsc Res Tech. 1994;28:385–97.

    Article  PubMed  CAS  Google Scholar 

  371. Shapses SA, Sandell LJ, Ratcliffe A. Differential rates of aggrecan synthesis and breakdown in different zones of the bovine growth plate. Matrix Biol. 1994;14:77–86.

    Article  PubMed  CAS  Google Scholar 

  372. Vogel KG. Glycosaminoglycans and proteoglycans, pp 243-279. In: Yurchenco PD, Birk DE, Mecham RP, editors. Extracellular matrix assembly and structure. San Diego: Academic Press; 1994.

    Google Scholar 

  373. Bianco P, Fisher LW, Yuong ME, Termine JD, Robey PG. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J Histochem Cytochem. 1990;38:1549–63.

    Article  PubMed  CAS  Google Scholar 

  374. Ayad S, Boot-Handford RP, Humphries MJ, Kadler KE, Shuttleworth CA. The extracellular matrix facts book. San Diego: Academic Press; 1994.

    Google Scholar 

  375. Heinegard D, Oldberg A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 1989;3:2042–51.

    PubMed  CAS  Google Scholar 

  376. Chen Q, Johnson DM, Haudenschild DR, Goetinck PF. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation. Dev Biol. 1995;172:293–306.

    Article  PubMed  CAS  Google Scholar 

  377. Vukicevic S, Paralkar VM, Cunningham NS, Gurkind JS, Reddi AH. Autoradiographic localization of osteogenin binding sites in cartilage and bone during rat embryonic development. Dev Biol. 1990;209–14.

    Google Scholar 

  378. Hultenby K, Reinholt FP, Norgard M, Oldberg A, Wendel M, Heinegard D. Distribution and synthesis of bone sialoprotein in metaphyseal bone of young rats show a distinctly different pattern from that of osteopontin. Eur J Cell Biol. 1994;63:230–9.

    PubMed  CAS  Google Scholar 

  379. Hunter GK, Kyle CL, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J. 1994;300:723–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  380. Bernfield M, Gotte M, Park PW, et al. Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem. 1999;68:729–77.

    Article  PubMed  CAS  Google Scholar 

  381. Kosher RA. Syndecan-3 in limb skeletal development. Microsc Res Tech. 1998;43:123–30.

    Article  PubMed  CAS  Google Scholar 

  382. Selleck SB. Proteoglycans and pattern formation. Sugar biochemistry meets developmental genetics. Trends Genet. 2000;16:206–12.

    Article  PubMed  CAS  Google Scholar 

  383. Nurminskaya M, Linsenmayer TF. Identification and characterization of Up-regulated genes during chondrocyte hypertrophy. Dev Dynam. 1996;206:260–71.

    Article  CAS  Google Scholar 

  384. Ferguson C, Alper E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Deve. 1999;87:57–66.

    Article  CAS  Google Scholar 

  385. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Op Cell Biol. 1995;7:728–835.

    Article  PubMed  CAS  Google Scholar 

  386. Woessner JF Jr. The family of matrix metalloproteinases. Ann NY Acad Sci. 1994;732:11–20.

    Article  PubMed  CAS  Google Scholar 

  387. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPS. Cardiovas Res. 2006;69:562–73.

    Article  CAS  Google Scholar 

  388. Haeusler G, Walter I, Helmreich M, Egerbacher M. Localization of matrix metalloproteinases (MMPs), their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation. Calcif Tissue Int. 2005;76:326–35.

    Article  PubMed  CAS  Google Scholar 

  389. Ricard-Blum S, Salza R. Matricyptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol. 2014. doi:10.1111/exd.12435.

    Google Scholar 

  390. Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969;41:59–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  391. Anderson HC. Molecular biology of matrix vesicles. Clin Orthop Rel Res. 1995;314:266–80.

    Google Scholar 

  392. Anderson HC, Garimella R, Tague SE. The role of matrix vesicles in growth plate development and biomineralization. Front Biosci. 2005;10:822–37.

    Article  PubMed  CAS  Google Scholar 

  393. Landis WJ, Paine MC, Hodgens KJ, Glimcher MJ. Matrix vesicles in embryonic chick bone: considerations of their identification, number, distribution, and possible effects on calcification of extracellular matrices. J Ultrastruc Res. 1986;95:142–63.

    Article  CAS  Google Scholar 

  394. Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high voltage electron microscopic tomography and graphic image reconstruction. J Struc Biol. 1993;1(10):39–54.

    Article  Google Scholar 

  395. Fell HB, Robisson R. The growth, development and phosphatase activity of embryonic avian femora and limb-buds cultivated in vitro. Biochem J. 1929;23:767–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  396. Gerstenfeld LC, Landis WJ. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system. J Cell Biol. 1991;112:501–13.

    Article  PubMed  CAS  Google Scholar 

  397. Rey C, Beshah K, Griffin R, Glimcher MJ. Structural studies of the mineral phase of calcifying cartilage. J Bone Miner Res. 1991;6:515–25.

    Article  PubMed  CAS  Google Scholar 

  398. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 2005;19:1093–104.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  399. Hoshi K, Ejiri S, Ozawa H. Localizational alterations of calcium phosphorus and calcification related organics such as proteoglycans and alkaline phosphatase during bone calcification. J Bone Miner Res. 2001;16:289–98.

    Article  PubMed  CAS  Google Scholar 

  400. Cowles EA, DeRome ME, Pastizzo G, Brailey LL, Gronowicz GA. Mineralization and the expression of matrix proteins during in vivo bone development. Calcif Tissue Int. 1998;62:74–82.

    Article  PubMed  CAS  Google Scholar 

  401. Roach HI. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralization and resorption. Cell Biol Internat. 1994;18:617–28.

    Article  CAS  Google Scholar 

  402. Butler WT. The nature and significance of osteopontin. Conn Tiss Res. 1989;23:123–36.

    Article  CAS  Google Scholar 

  403. McKee MD, Glimcher MJ, Nanci A. High-resolution immunolocalization of osteopontin and osteocalcin in bone and cartilage during endochondral ossification in the chicken tibia. Anat Rec. 1992;234:479–92.

    Article  PubMed  CAS  Google Scholar 

  404. Golub EE. Role of matrix vesicles in biomineralization. Biochem Biophys Acta. 2009;1790:1592–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  405. Golub EE. Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol. 2011;33:409–17.

    Article  PubMed Central  PubMed  Google Scholar 

  406. Landis WJ, Jacquet R. Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int. 2013;93:329–37.

    Article  PubMed  CAS  Google Scholar 

  407. Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs. 2009;189:20–4.

    Article  PubMed  CAS  Google Scholar 

  408. Silver FH, Landis WJ. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen. Connect Tissue Res. 2011;52:242–54.

    Article  PubMed  CAS  Google Scholar 

  409. Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED. In vitro models of collagen biomineralization. J Struct Biol. 2013;183:258–69.

    Article  PubMed  CAS  Google Scholar 

  410. Li Y, Aparicio C. Discerning the subfibrillar structure of mineralized collagen fibrils; a model for the ultrastructure of bone. PloS One. 2013.doi:10.1371/journal.pone0076782.

  411. Brighton CT, Hunt RM. The role of mitochondria in growth plate calcification as demonstrated in a rachitic model. J Bone Joint Surg. 1978;60A:630–9.

    Google Scholar 

  412. Kember NF. Cell division in endochondral ossification: a study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J Bone Joint Surg. 1960;42B:824–39.

    CAS  Google Scholar 

  413. Kember NF. Cell population kinetics of bone growth: the first ten years of autoradiographic studies with tritiated thymidine. Clin Orthop Rel Res. 1971;76:213–30.

    Article  CAS  Google Scholar 

  414. Kember NF. Cell kinetics and the control of growth in long bones. Cell Tissue Kinet. 1978;11:477–85.

    PubMed  CAS  Google Scholar 

  415. Lufti AM. Study of cell multiplication in the cartilaginous upper end of the tibia of the domestic fowl by tritiated thymidine autoradiography. Acta Anat. 1970;76:454–63.

    Article  Google Scholar 

  416. Digby KH. The measurement of diaphysial growth in proximal and distal directions. J Anat Physiol. 1916;50:187–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  417. Pritchett JW. Growth plate activity in the upper extremity. Clin Orthop Rel Res. 1991;268:235–42.

    Google Scholar 

  418. Pritchett JW. Longitudinal growth and growth-plate activity in the lower extremity. Clin Orthop Rel Res. 1992;275:274–9.

    Google Scholar 

  419. Anderson M, Green WT, Messner MB. Growth and predictions of growth in the lower extremities. J Bone Joint Surg. 1963;45A:1–14.

    Google Scholar 

  420. Anderson M, Messner MB, Green WT. Distribution of lengths of the normal femur and tibia in children from one to eighteen years of age. J Bone Joint Surg. 1964;46A:1197–202.

    Google Scholar 

  421. Karrholm J, Hansson LI, Selvik G. Longitudinal growth rate of the distal tibia and fibula in children. Clin Orthop Rel Res. 1984;191:121–8.

    Google Scholar 

  422. Maresh MM. Linear growth of long bones of extremities from infancy through adolescence. Am J Dis Child. 1955;89:725–42.

    CAS  Google Scholar 

  423. White JW, Stubbins SG Jr. Growth arrest for equalizing leg lengths. J Am Med Assoc. 1944;126:1146–8.

    Article  Google Scholar 

  424. Ogden JA. Growth slowdown and arrest lines. J Pediatr Orthop. 1984;4:409–15.

    Article  PubMed  CAS  Google Scholar 

  425. Siffert RS, Katz JF. Growth recovery zones. J Pediatr Orthop. 1983;3:196–201.

    Article  PubMed  CAS  Google Scholar 

  426. King TW. On the progressive development of the osseous bodies of the vertebrae and sternum. London Med Gaz. 1844;34:73–7.

    Google Scholar 

  427. Thompson D’AW. On growth and form. The complete revised edition, Edn 2. Dover: New York 1942.

    Google Scholar 

  428. Hueter C. Anatomische studien an den extremitatengelenken neugeborener und erwachsener. Archiv Path Anat u Physiol u f Klin Med. 1862;25:572–99.

    Article  Google Scholar 

  429. Volkmann R. Chirurgische erfahrungen uber knochenverbiegungen und knochenwachsthum. Arch f Path Anat Physiol u Klin Med. 1862;24:512–41.

    Article  Google Scholar 

  430. Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald; 1892.

    Google Scholar 

  431. Parsons FG. Observations on traction epiphyses. J Anat Physiol. 1904;38:248–58.

    PubMed Central  PubMed  CAS  Google Scholar 

  432. Parsons FG. Further remarks on traction epiphyses. J Anat Physiol. 1908;42:388–96.

    PubMed Central  PubMed  CAS  Google Scholar 

  433. Haines RW. Note on the independence of sesamoid and epiphysial centres of ossification. J Anat. 1940;75:101–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  434. Barnett CH, Lewis OJ. The evolution of some traction epiphyses in birds and mammals. J Anat. 1958;92:593–600.

    PubMed Central  PubMed  CAS  Google Scholar 

  435. Schaffer J. Trajektorielle strukturen im knorpel. Verhandlungen Anat Ges. 1911;25:162–8.

    Google Scholar 

  436. Francis CC, Werle PP. The appearance of centers of ossification from birth to 5 years. Am J Phys Anthrop. 1939;24:273–99.

    Article  Google Scholar 

  437. Pauwels F (1980) Biomechanics of the locomotor apparatus. p. 324–328, 375–407, 508–513, New York: Springer.

    Google Scholar 

  438. Carter DR, Wong M. Mechanical stresses and endochondral ossification in the chondroepiphysis. J Orthop Res. 1988;6:148–54.

    Article  PubMed  CAS  Google Scholar 

  439. Carter DR, Wong M. Mechanical stresses in joint morphogenesis and maintenance. In: Mow VC, Ratcliffe A, Woo SL-Y, editors. Biomechanics of diarthrodial joints, vol. 2. New York: Springer; 1990. p. 155–74.

    Chapter  Google Scholar 

  440. Borgens RB. Endogenous ionic currents traverse intact and damaged bone. Science. 1984;225:478–82.

    Article  PubMed  CAS  Google Scholar 

  441. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strains. Calcif Tissue Int. 1995;57:344–58.

    Article  PubMed  CAS  Google Scholar 

  442. Henderson JH, Carter DR. Mechanical induction in limb morphogenesis. The role of growth-generated strains and pressures. Bone. 2002;31:645–53.

    Article  PubMed  CAS  Google Scholar 

  443. Forriol F, Shapiro F. Bone development. Interaction of molecular components and biophysical forces. Clin Orthop Rel Res. 2005;432:14–33.

    Article  Google Scholar 

  444. Roux W. Anpassungsleher, Histomechanik, Histochemie. Mit Bermerkunngen uber die Entwicklung und Formgestaltung der Gelenke (Adaptation, Histomechanics, histochemistry. With comments on the development and morphology of the joints). Virchows Arch. 1912;207:168–209.

    Article  Google Scholar 

  445. Krompecher S. Die Entwicklung der Knochenzellen und die Bildung der Knochengrundsubstanz bei der knorpelig und bindegewbig corgebildeten sowie der primaren reinen Knochenbildung (The development of bone cells and the formation of the ground substance of bone during bone preformed by cartilage or connective tissue as well as during primary pure bone formation). Verh Anat Ges. 1934;42:34–53.

    Google Scholar 

  446. Krompecher S. Die Knochenbildung (Bone Formation). Jena: Gustav Fischer; 1937.

    Google Scholar 

  447. Krompecher S. Die Beeinflussbarkeit der Gewebsdifferenzierund der granulierenden Knochenoberflachen insbesondere die der Callusbilding (The possibility to influence tissue differentiation of the granulating bone surfaces, especially those of callus formation). Langenbecks Arch Klin Chir. 1956;281:472–512.

    Article  CAS  PubMed  Google Scholar 

  448. Pauwels F. Biomechanics of the normal and diseased hip. In: Furlong RF, Maquet P, editor. Theoretical foundation, technique and results of treatment. An atlas. Berline: Springer (1976).

    Google Scholar 

  449. Weinans H, Prendergast PJ. Tissue adaptation as a dynamical process far from equilibrium. Bone. 1996;19:143–9.

    Article  PubMed  CAS  Google Scholar 

  450. Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Rel Res. 1998;355S:S41–55.

    Article  Google Scholar 

  451. Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech. 1999;32:255–66.

    Article  PubMed  CAS  Google Scholar 

  452. Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Rel Res. 1979;138:175–96.

    Google Scholar 

  453. Owan I, Burr BD, Turner CH, Qui J, Tu Y, Onga JE, Duncan RL. Mechanotransduction in bone: osteoblasts are more responsive to fluid flow than mechanical strain. Am J Physiol. 1997;273:C810–5.

    PubMed  CAS  Google Scholar 

  454. Prendergast PJ, van der Meulen MCH. Mechanics of bone regeneration. In: Cowin SJ, editor. Bone mechanics handbook. 2nd ed. Boca Raton FL: CRC Press; 2001. p. 1–13.

    Google Scholar 

  455. Carey EJ. Studies in the dynamics of histogenesis. Growth motive force as a dynamic stimulus to the genesis of muscular and skeletal tissues. Anat Rec. 1920;19:199–235.

    Article  Google Scholar 

  456. Carey EJ. Studies in the dynamics of histogenesis. Am J Anat. 1921;29:93–115.

    Article  Google Scholar 

  457. Carey EJ. Direct observations on the transformation of the mesenchyme in the thigh of the pig embryo (sus scrofa), with especial reference to the genesis of the thigh muscles, of the knee-and hip-joints, and of the primary bone of the femur. J Morph. 1922;37:1–77.

    Google Scholar 

  458. Carey EJ. Studies in the dynamics of histogenesis. XIV. Radiology. 1929;13:127–68.

    Article  Google Scholar 

  459. Carter DR, Orr TE, Fyhrie DP, Schurman DJ. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Rel Res. 1987;219:237–50.

    Google Scholar 

  460. Carter DR, Orr TE. Skeletal development and bone functional adaptation. J Bone Miner Res. 1992;7:389–95.

    Article  Google Scholar 

  461. Wong M, Carter DR. A theoretical model of endochondral ossification and bone architectural construction in long bone ontogeny. Anat Embryol. 1990;181:523–32.

    Article  PubMed  CAS  Google Scholar 

  462. Frost HM, Jee WSS. Perspectives: applications of a biomechanical model of the endochondral ossification mechanism. Anat Rec. 1994;240:447–55.

    Article  PubMed  CAS  Google Scholar 

  463. Frost HM, Jee WSS. Perspectives: a vital biomechanical model of the endochondral ossification mechanism. Anat Rec. 1994;240:435–46.

    Article  PubMed  CAS  Google Scholar 

  464. Bylski-Austrow DI, Wall EJ, Rupert MP, Roy DR, Crawford AH. Growth plate forces in the adolescent human knee: a radiographic and mechanical study of epiphyseal staples. J Pediatr Orthop. 2001;21:817–23.

    Google Scholar 

  465. Cook SD, Lavernia CJ, Burke SW, et al. A biomechanical analysis of the etiology of tibia vara. J Pediatr Orthop. 1983;3:449–54.

    Article  PubMed  CAS  Google Scholar 

  466. Wilson-MacDonald J, Houghton GR, Bradley J, Morscher E. The relationship between periosteal division and compression or distraction of the growth plate. J Bone Joint Surg Br. 1990;72:303–8.

    PubMed  CAS  Google Scholar 

  467. Hert J. Acceleration of the growth after decrease of load on epiphyseal plates by means of spring distractors. Folia Morph. 1969;17:194–203.

    CAS  Google Scholar 

  468. Robling AG, Duijvelaar KM, Geevers JV, et al. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone. 2001;29:105–13.

    Article  PubMed  CAS  Google Scholar 

  469. Villemure I, Stokes IAF. Growth plate mechanics and mechanobiology. A survey of present understanding. J Biomech. 2009;42:1793–803.

    Article  PubMed Central  PubMed  Google Scholar 

  470. Stokes IAF, Clarck KC, Farnum CE, Aronsson DD. Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone. 2007;41:197–205.

    Article  PubMed Central  PubMed  Google Scholar 

  471. Stokes IAF, Aronsson DD, Dimock AN, Cortright V, Beck S. Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res. 2006;24:1327–34.

    Article  PubMed Central  PubMed  Google Scholar 

  472. Bonnel F, Peruchon E, Baldet P, Dimeglio A, Rabischong P. Effects of compression on growth plates in the rabbit. Acta Orthop Scand. 1983;54:730–3.

    Article  PubMed  CAS  Google Scholar 

  473. Safran MR, Eckardt JJ, Kabo JM, et al. Continued growth of the proximal part of the tibia after prosthetic reconstruction of the skeletally immature knee. J Bone Joint Surg Am. 1992;74:1172–9.

    PubMed  CAS  Google Scholar 

  474. Thomson MB. The relation of structure and function as illustrated by the form of the lower epiphysial suture of the femur. J Anat Physiol. 1902;36:95–105.

    PubMed Central  PubMed  CAS  Google Scholar 

  475. Smith JW. The relationship of epiphysial plates to stress in some bones of the lower limb. J Anat. 1962;96:58–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  476. Murray PDF. Bones. Cambridge: Cambridge University Press; 1936.

    Google Scholar 

  477. Delpech JM (1828) De l’Orthomorphie. 2 vol. Paris, Gabon.

    Google Scholar 

  478. Ryoppy S, Karaharju EO. Alteration of epiphyseal growth by an experimentally produced angular deformity. Acta Orthop Scand. 1974;45:490–8.

    Article  PubMed  CAS  Google Scholar 

  479. Husby OS, Sudmann B, Gjerdet NR, Hitland SU, Sudmann E. Spontaneous correction of femoral torsion diaphyseal osteotomies studied in kittens. Acta Orthop Scand. 1987;58:113–6.

    Article  PubMed  CAS  Google Scholar 

  480. Gelbke H. The influence of pressure and tension on growing bone in experiments with animals. J Bone Joint Surg. 1951;33A:947–54.

    Google Scholar 

  481. Maas H. Ueber den einfluss pathologischer druck-und zugspannungen auf das knochenwachstum. Zeit f Orthop Chir. 1924;44:352–75.

    Google Scholar 

  482. Arkin AM, Katz JF. The effects of pressure on epiphyseal growth. J Bone Joint Surg. 1956;38A:1056–76.

    Google Scholar 

  483. Blount WP, Seier F. Control of bone length. J Am Med Assoc. 1952;148:451–7.

    Article  PubMed  CAS  Google Scholar 

  484. Franz CH. Epiphyseal stapling: a comprehensive review. Clin Orthop Rel Res. 1971;77:149–57.

    Google Scholar 

  485. Strobino LJ, French GO, Colonna PC. The effect of increasing tensions on the growth of epiphyseal bone. Surg Gynec Obstet. 1952;95:694–700.

    PubMed  CAS  Google Scholar 

  486. Tschantz P, Taillard W, Ditesheim PJ. Epiphyseal tilt produced by experimental overload. Clin Orthop Rel Res. 1977;123:271–9.

    Google Scholar 

  487. Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene. 2006;367:1–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  488. Nowlan NC, Prendergast PJ, Murphy P. Identification of mechanosensitive genes during embryonic bone formation PLoS One. 2008;4(12):e10002050.

    Google Scholar 

  489. Rolfe RA, Nowlan NC, Kenny EM, Cormican P, et al. Identification of mechanosensitive genes during skeletal development: alternation of genes associated with cytoskeletal rearrangement and cell signaling pathways. BMC Genom. 2014;15:48.

    Article  Google Scholar 

  490. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20:811–27.

    Article  PubMed  CAS  Google Scholar 

  491. Leucht P, Kim J-B, Currey JA, Brunski J, Helms JA. FAK-mediated mechanotransduction in skeletal regeneration. PLoS One. 2007;2(4):e390.

    PubMed  Google Scholar 

  492. tenDijke, Krause C, deGorter DJJ, Clemens WGM et al. Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am. 2008;90:(Suppl 1):31–5.

    Google Scholar 

  493. Lin C, Jiang X, Dai Z, Guo X, Weng T, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24:1651–61.

    Article  PubMed  CAS  Google Scholar 

  494. Robling AG, Bellido T, Turner CH. Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact. 2006;6:354.

    PubMed  CAS  Google Scholar 

  495. Bardeen CR. Development of the skeleton and of the connective tissues. In: Keibel F, Mall FP, editor. Manual of human embryology. Philadelphia: JB Lippincott, p. 292–397, (1910).

    Google Scholar 

  496. Mall FP. On ossification centers in human embryos less than one hundred days old. Am J Anat. 1906;5:433–58.

    Article  Google Scholar 

  497. Noback CR, Robertson GG. Sequences of appearance of ossification centers in the human skeleton during the first five prenatal months. Am J Anat. 1951;89:1–28.

    Article  PubMed  CAS  Google Scholar 

  498. Thane GD (1893) Osteology, vol. II, part I of Quain’s elements of anatomy, Schafer EA, Thane GD, editor. London: Longmans, Green.

    Google Scholar 

  499. Campt JD, Cilley EIL. Diagrammatic chart showing time of appearance of the various centers of ossification and period of union. Am J Roent Rad Ther. 1931;26:905.

    Google Scholar 

  500. Flecker H. Time of appearance and fusion of ossification centers as observed by roentgenographic methods. Am J Roent. 1942;47:97–159.

    Google Scholar 

  501. Girdany BR, Golden R. Centers of ossification of the skeleton. Am J Roent. 1952;68:922–4.

    CAS  Google Scholar 

  502. Francis CC. The appearance of centers of ossification from 6 to 15 years. Am J Phys Anthrop. 1940;27:127–38.

    Article  Google Scholar 

  503. Hill AH. Fetal age assessment by centers of ossification. Am J Phys Anthrop. 1939;24:251–72.

    Article  Google Scholar 

  504. Hansman CF. Appearance and fusion of ossification centers in the human skeleton. Am J Roent. 1962;8:476–82.

    Google Scholar 

  505. Ogden JA, Conlogue GJ, Jensen P. Radiology of postnatal skeletal development: the proximal humerus. Skelet Radiol. 1978;2:153–60.

    Article  Google Scholar 

  506. McCarthy SM, Ogden MD. Radiology of postnatal skeletal development VI. Elbow joint, proximal radius, and ulna. Skelet Radiol. 1982;9:17–26.

    Article  CAS  Google Scholar 

  507. Ogden JA, Beall JK, Conlogue GJ, Light TR. Radiology of postnatal skeletal development IV. Distal radius and ulna. Skelet Radiol. 1981;6:255–66.

    Article  CAS  Google Scholar 

  508. Acheson RM. The Oxford method of assessing skeletal maturity. Clin Orthop Rel Res. 1957;10:19–39.

    CAS  Google Scholar 

  509. Morgan JD, Somerville EW. Normal and abnormal growth at the upper end of the femur. J Bone Joint Surg. 1960;42B:264–72.

    Google Scholar 

  510. Osborne D, Effmann E, Broda K, Harrelson J. The development of the upper end of the femur with special reference to its internal architecture. Pediatr Radiol. 1980;137:71–6.

    CAS  Google Scholar 

  511. Strayer LM. The embryology of the human hip joint. Yale J Biol Med. 1943;16:13–26.

    PubMed Central  PubMed  CAS  Google Scholar 

  512. Taussig G, Delor MH, Masse P. Les alterations de croissance de l’extremitie superieure du femur. Rev Chir Orthop. 1976;62:191–210.

    PubMed  CAS  Google Scholar 

  513. Mahoney BS, Callen PW, Filly RA. The distal femoral epiphyseal ossification center in the assessment of third-timester menstrual age: sonographic identification and measurement. Radiology. 1985;155:201–4.

    Article  Google Scholar 

  514. Ogden JA. Radiology of postnatal skeletal development IX. Proximal tibia and fibula. Skelet Radiol. 1984;11:169–77.

    Article  CAS  Google Scholar 

  515. Ogden JA. Radiology of postnatal skeletal development X Patella and tibial tuberosity. Skelet Radiol. 1984;11:246–57.

    Article  CAS  Google Scholar 

  516. Love SM, Ganey T, Ogden JA. Postnatal epiphyseal development: the distal tibia and fibula. J Pediatr Orthop. 1990;10:298–305.

    Article  PubMed  CAS  Google Scholar 

  517. Ogden JA, McCarthy SM. Radiology of postnatal skeletal development VIII. Distal tibia and fibula. Skelet Radiol. 1983;10:209–20.

    Article  CAS  Google Scholar 

  518. Ogden JA, Lee J. Accessory ossification patterns and injuries of the malleoli. J Pediat Orthop. 1990;10:306–16.

    Article  CAS  Google Scholar 

  519. Powell HDW. Extra centre of ossification for the medical malleolus in children: incidence and significance. J Bone Joint Surg. 1961;43B:107–13.

    Google Scholar 

  520. Selby S. Separate centers of ossification of the tip of the internal malleolus. Am J Roent. 1961;86:496–501.

    CAS  Google Scholar 

  521. Beals RK, Skyhar M. Growth and development of the tibia, fibula, and ankle joint. Clin Orthop Rel Res. 1984;182:289–92.

    Google Scholar 

  522. Stevenson PH. Age order of epiphyseal union in man. Am J Phys Anthrop. 1924;7:53–93.

    Article  Google Scholar 

  523. Dvonch VM, Bunch WH. Pattern of closure of the proximal femoral and tibial epiphyses in man. J Pediatr Orthop. 1983;3:498–501.

    Article  PubMed  CAS  Google Scholar 

  524. Haines RW, Mohiuddin A, Okpa FI, Viega-Pires JA. The sites of early epiphyseal union in the limb girdles and major long bones of man. J Anat. 1967;101:823–31.

    PubMed Central  PubMed  CAS  Google Scholar 

  525. Haines RW. The histology of epiphyseal union in mammals. J Anat. 1975;120:1–25.

    PubMed Central  PubMed  CAS  Google Scholar 

  526. Haines RW. The evolution of epiphyses and of endochondral bone. Biol Rev. 1942;17:267–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Shapiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shapiro, F. (2016). Developmental Bone Biology. In: Pediatric Orthopedic Deformities, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-20529-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20529-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20528-1

  • Online ISBN: 978-3-319-20529-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics