The Role of Targeted Therapies or Nonsurgical Treatment of Thyroid Malignancies: Is Surgery Being Replaced?

  • Daniel C. McFarlandEmail author
  • Indu Varier
  • Krzysztof Misiukiewicz


Targeted therapies are emerging rapidly and are challenging the traditional roles of nonsurgical therapy for the treatment of thyroid cancers. Molecular pathways hold the key for designing rationally based drugs such as the already FDA-approved tyrosine kinase inhibitors: sorafenib, vandetanib, and cabozantinib. Many more targeted therapies are under investigation. For instance, selumetinib is a MEK inhibitor that has been shown to restore radioiodine avidity to radioiodine refractory thyroid cancers. This chapter reviews standard nonsurgical treatments including the historical use of cytotoxic chemotherapy, the molecular science behind newly approved and experimental targeted agents, and their supporting clinical trial data. Lastly, the chapter presents four common scenarios in thyroid cancer management where an increased role is forthcoming for nonsurgical modalities such as tyrosine kinase inhibitors. These cases contrast the cutting edge use of pharmacology, as monotherapy or in combination, with the current held standard of care. Nonsurgical modalities for thyroid cancer care are rapidly advancing, and the best use of these modalities has yet to be established as highlighted in the cases.


Thyroid cancer Targeted therapy Tyrosine kinase inhibitor Well-differentiated radioiodine-resistant thyroid cancer Novel therapy Anaplastic thyroid cancer Medullary thyroid cancer Refractory thyroid cancer 



Also known as protein kinase B


v-raf murine sarcoma viral oncogene homolog B1l DNA, deoxyribonucleic acid


Extracellular signal-regulated kinases


Histone deacetylase inhibitor


Mitogen-activated protein kinase


Mammalian target of rapamycin


Phosphoinositide 3-kinase


Rat sarcoma proteins


Rearranged during transfection tyrosine kinase receptor


Tyrosine kinase receptor


Vascular endothelial growth factor receptor


  1. 1.
    Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Nixon IJ, Whitcher MM, Palmer FL, et al. The impact of distant metastases at presentation on prognosis in patients with differentiated carcinoma of the thyroid gland. Thyroid. 2012;22(9):884–9.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Capdevila J, Argiles G, Rodriguez-Frexinos V, Nunez I, Tabernero J. New approaches in the management of radioiodine-refractory thyroid cancer: the molecular targeted therapy era. Discov Med. 2010;9(45):153–62.PubMedGoogle Scholar
  5. 5.
    Eustatia-Rutten CF, Corssmit EP, Biermasz NR, Pereira AM, Romijn JA, Smit JW. Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2006;91(1):313–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Papaleontiou M, Haymart MR. New insights in risk stratification of differentiated thyroid cancer. Curr Opin Oncol. 2014;26(1):1–7.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Shaha AR, Shah JP, Loree TR. Risk group stratification and prognostic factors in papillary carcinoma of thyroid. Ann Surg Oncol. 1996;3(6):534–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Brierley JD, Panzarella T, Tsang RW, Gospodarowicz MK, O’Sullivan B. A comparison of different staging systems predictability of patient outcome. Thyroid carcinoma as an example. Cancer. 1997;79(12):2414–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Sherman SI, Brierley JD, Sperling M, et al. Prospective multicenter study of thyroiscarcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group. Cancer. 1998;83(5):1012–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Brose MS, Smit J, Capdevila J, et al. Regional approaches to the management of patients with advanced, radioactive iodine-refractory differentiated thyroid carcinoma. Expert Rev Anticancer Ther. 2012;12(9):1137–47.PubMedCrossRefGoogle Scholar
  11. 11.
    Hay ID, Grant CS, Taylor WF, McConahey WM. Ipsilateral lobectomy versus bilateral lobar resection in papillary thyroid carcinoma: a retrospective analysis of surgical outcome using a novel prognostic scoring system. Surgery. 1987;102(6):1088–95.PubMedGoogle Scholar
  12. 12.
    Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 1993;114(6):1050–7. discussion 1057–1058.PubMedGoogle Scholar
  13. 13.
    Byar DP, Green SB, Dor P, et al. A prognostic index for thyroid carcinoma. A study of the E.O.R.T.C. Thyroid Cancer Cooperative Group. Eur J Cancer. 1979;15(8):1033–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Dean DS, Hay ID. Prognostic indicators in differentiated thyroid carcinoma. Cancer Control. 2000;7(3):229–39.PubMedGoogle Scholar
  15. 15.
    Verburg FA, Mader U, Kruitwagen CL, Luster M, Reiners C. A comparison of prognostic classification systems for differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2010;72(6):830–8.CrossRefGoogle Scholar
  16. 16.
    Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115(16):3801–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Vas Nunes JH, Clark JR, Gao K, et al. Prognostic implications of lymph node yield and lymph node ratio in papillary thyroid carcinoma. Thyroid. 2013;23(7):811–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Pujol P, Daures JP, Nsakala N, Baldet L, Bringer J, Jaffiol C. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab. 1996;81(12):4318–23.PubMedGoogle Scholar
  19. 19.
    McLeod DS. Thyrotropin in the development and management of differentiated thyroid cancer. Endocrinol Metab Clin North Am. 2014;43(2):367–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Fiore E, Vitti P. Serum TSH and risk of papillary thyroid cancer in nodular thyroid disease. J Clin Endocrinol Metab. 2012;97(4):1134–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Haymart MR, Glinberg SL, Liu J, Sippel RS, Jaume JC, Chen H. Higher serum TSH in thyroid cancer patients occurs independent of age and correlates with extrathyroidal extension. Clin Endocrinol (Oxf). 2009;71(3):434–9.CrossRefGoogle Scholar
  22. 22.
    Prescott JD, Sadow PM, Hodin RA, et al. BRAF V600E status adds incremental value to current risk classification systems in predicting papillary thyroid carcinoma recurrence. Surgery. 2012;152(6):984–90.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Rusinek D, Szpak-Ulczok S, Jarzab B. Gene expression profile of human thyroid cancer in relation to its mutational status. J Mol Endocrinol. 2011;47(3):R91–103.PubMedCrossRefGoogle Scholar
  24. 24.
    Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2014;2(5):356–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Maxwell JE, Sherman SK, O’Dorisio TM, Howe JR. Medical management of metastatic medullary thyroid cancer. Cancer. 2014;120:3287–301.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Gottlieb JA, Hill Jr CS, Ibanez ML, Clark RL. Chemotherapy of thyroid cancer. An evaluation of experience with 37 patients. Cancer. 1972;30(3):848–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Gottlieb JA, Hill Jr CS. Chemotherapy of thyroid cancer with adriamycin. Experience with 30 patients. N Engl J Med. 1974;290(4):193–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Matuszczyk A, Petersenn S, Bockisch A, et al. Chemotherapy with doxorubicin in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm Metab Res. 2008;40(3):210–3. doi: 10.1055/s-2008-1046781.PubMedCrossRefGoogle Scholar
  30. 30.
    Williams SD, Birch R, Einhorn LH. Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: a Southeastern Cancer Study Group Trial. Cancer Treat Rep. 1986;70(3):405–7.PubMedGoogle Scholar
  31. 31.
    Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985;56(9):2155–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Matuszczyk A, Petersenn S, Voigt W, et al. Chemotherapy with paclitaxel and gemcitabine in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm Metab Res. 2010;42(1):61–4. doi: 10.1055/s-0029-1238294. Epub 1232009 Sep 1238294.PubMedCrossRefGoogle Scholar
  33. 33.
    Santini F, Bottici V, Elisei R, et al. Cytotoxic effects of carboplatinum and epirubicin in the setting of an elevated serum thyrotropin for advanced poorly differentiated thyroid cancer. J Clin Endocrinol Metab. 2002;87(9):4160–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Besic N, Auersperg M, Gazic B, Dremelj M, Zagar I. Neoadjuvant chemotherapy in 29 patients with locally advanced follicular or Hurthle cell thyroid carcinoma: a phase 2 study. Thyroid. 2012;22(2):131–7. doi: 10.1089/thy.2011.0243. Epub 2011 Dec 1016.PubMedCrossRefGoogle Scholar
  35. 35.
    Besic N, Auersperg M, Dremelj M, Vidergar-Kralj B, Gazic B. Neoadjuvant chemotherapy in 16 patients with locally advanced papillary thyroid carcinoma. Thyroid. 2013;23(2):178–84. doi: 10.1089/thy.2012.0194.PubMedCrossRefGoogle Scholar
  36. 36.
    Carlomagno F, Santoro M. Thyroid cancer in 2010: a roadmap for targeted therapies. Nat Rev Endocrinol. 2011;7(2):65–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184–99.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Pratilas CA, Taylor BS, Ye Q, et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA. 2009;106(11):4519–24.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63(7):1454–7.PubMedGoogle Scholar
  40. 40.
    Soares P, Maximo V, Sobrinho-Simoes M. Molecular pathology of papillary, follicular and Hurthle cell carcinomas of the thyroid. Arkh Patol. 2003;65(2):45–7.PubMedGoogle Scholar
  41. 41.
    Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88(11):5399–404.PubMedCrossRefGoogle Scholar
  42. 42.
    Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69(11):4885–93.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Franco AT, Malaguarnera R, Refetoff S, et al. Thyrotropin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci USA. 2011;108(4):1615–20.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Durante C, Puxeddu E, Ferretti E, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92(7):2840–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Espadinha C, Santos JR, Sobrinho LG, Bugalho MJ. Expression of iodine metabolism genes in human thyroid tissues: evidence for age and BRAFV600E mutation dependency. Clin Endocrinol (Oxf). 2009;70(4):629–35.CrossRefGoogle Scholar
  46. 46.
    Romei C, Ciampi R, Faviana P, et al. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr Relat Cancer. 2008;15(2):511–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Chakravarty D, Santos E, Ryder M, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Knauf JA, Ouyang B, Croyle M, Kimura E, Fagin JA. Acute expression of RET/PTC induces isozyme-specific activation and subsequent downregulation of PKCepsilon in PCCL3 thyroid cells. Oncogene. 2003;22(44):6830–8.PubMedCrossRefGoogle Scholar
  49. 49.
    De Vita G, Bauer L, da Costa VM, et al. Dose-dependent inhibition of thyroid differentiation by RAS oncogenes. Mol Endocrinol. 2005;19(1):76–89.PubMedCrossRefGoogle Scholar
  50. 50.
    Karras S, Anagnostis P, Krassas GE. Vandetanib for the treatment of thyroid cancer: an update. Expert Opin Drug Metab Toxicol. 2014;10(3):469–81.PubMedCrossRefGoogle Scholar
  51. 51.
    Wells Jr SA, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Colombo JR, Wein RO. Cabozantinib for progressive metastatic medullary thyroid cancer: a review. Ther Clin Risk Manag. 2014;10:395–404.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Karras S, Pontikides N, Krassas GE. Pharmacokinetic evaluation of cabozantinib for the treatment of thyroid cancer. Expert Opin Drug Metab Toxicol. 2013;9(4):507–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29(19):2660–6.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Elisei R, Schlumberger MJ, Muller SP, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639–46.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
  57. 57.
    Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Grande E, Diez JJ, Zafon C, Capdevila J. Thyroid cancer: molecular aspects and new therapeutic strategies. J Thyroid Res. 2012;2012:847108.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Stjepanovic N, Capdevila J. Multikinase inhibitors in the treatment of thyroid cancer: specific role of lenvatinib. Biologics. 2014;8:129–39.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Schlumberger M. A phase 3, multicenter, double-blind, placebo-controlled trial of lenvatinib (E7080) in patients with 131I-refractory differentiated thyroid cancer (SELECT). Paper presented at: 2014 ASCO Annual Meeting 2013; Chicago, ILGoogle Scholar
  61. 61.
    Kloos RT, Ringel MD, Knopp MV, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27(10):1675–84.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Lam ET, Ringel MD, Kloos RT, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28(14):2323–30.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Leboulleux S, Bastholt L, Krause T, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 2012;13(9):897–905.PubMedCrossRefGoogle Scholar
  64. 64.
    Anderson RT, Linnehan JE, Tongbram V, Keating K, Wirth LJ. Clinical, safety, and economic evidence in radioactive iodine-refractory differentiated thyroid cancer: a systematic literature review. Thyroid. 2013;23(4):392–407.PubMedCrossRefGoogle Scholar
  65. 65.
    Cohen EE, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26(29):4708–13.PubMedCrossRefGoogle Scholar
  66. 66.
    Nixon IJ, Shaha AR, Tuttle MR. Targeted therapy in thyroid cancer. Curr Opin Otolaryngol Head Neck Surg. 2013;21(2):130–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Haraldsdottir S, Shah MH. An update on clinical trials of targeted therapies in thyroid cancer. Curr Opin Oncol. 2014;26(1):36–44.PubMedCrossRefGoogle Scholar
  68. 68.
    Antonelli A, Fallahi P, Ferrari SM, et al. New targeted therapies for thyroid cancer. Curr Genomics. 2011;12(8):626–31.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Carr LL, Mankoff DA, Goulart BH, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16(21):5260–8.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Bible KC, Suman VJ, Molina JR, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 2010;11(10):962–72.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol. 2009;27(23):3794–801.PubMedCrossRefGoogle Scholar
  72. 72.
    Sherman EJ Ho A, Fury MG, et al. . A phase II study of temsirolimus/sorafenib in patients with radioactive iodine (RAI)-refractory thyroid carcinoma. J Clin Oncol. 2012;23(abstract Suppl: A5514).Google Scholar
  73. 73.
    McFarland DC, Misiukiewicz KJ. Sorafenib in radioactive iodine-refractory well-differentiated metastatic thyroid cancer. OncoTargets Ther. 2014;7:1291–9.CrossRefGoogle Scholar
  74. 74.
    Gild ML, Bullock M, Robinson BG, Clifton-Bligh R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):617–24.PubMedCrossRefGoogle Scholar
  75. 75.
    Dadu R, Devine C, Hernandez M, et al. Role of salvage targeted therapy in differentiated thyroid cancer patients who failed first-line sorafenib. J Clin Endocrinol Metab. 2014;99(6):2086–94.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Hayes DN, Lucas AS, Tanvetyanon T, et al. Phase II efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements. Clin Cancer Res. 2012;18(7):2056–65.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang S, Chen L. Immunobiology of cancer therapies targeting CD137 and B7-H1/PD-1 cosignal pathways. Curr Top Microbiol Immunol. 2011;344:245–67.PubMedGoogle Scholar
  78. 78.
    Saverino D, Brizzolara R, Simone R, et al. Soluble CTLA-4 in autoimmune thyroid diseases: relationship with clinical status and possible role in the immune response dysregulation. Clin Immunol. 2007;123(2):190–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Lu J, Lee-Gabel L, Nadeau MC, Ferencz TM, Soefje SA. Clinical evaluation of compounds targeting PD-1/PD-L1 pathway for cancer immunotherapy. J Oncol Pharm Prac. 2014:1–17.Google Scholar
  80. 80.
    Ito Y, Higashiyama T, Hirokawa M, et al. Clinical trial of weekly paclitaxel chemotherapy for papillary thyroid carcinoma with squamous cell carcinoma component. Endocr J. 2012;59(9):839–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Tennvall J, Lundell G, Hallquist A, Wahlberg P, Wallin G, Tibblin S. Combined doxorubicin, hyperfractionated radiotherapy, and surgery in anaplastic thyroid carcinoma. Report on two protocols The Swedish Anaplastic Thyroid Cancer Group. Cancer. 1994;74(4):1348–54.PubMedCrossRefGoogle Scholar
  82. 82.
    Crouzeix G, Michels JJ, Sevin E, et al. Unusual short-term complete response to two regimens of cytotoxic chemotherapy in a patient with poorly differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(9):3046–50.PubMedCrossRefGoogle Scholar
  83. 83.
    McCarthy RP, Wang M, Jones TD, Strate RW, Cheng L. Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas. Clin Cancer Res. 2006;12(8):2414–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Honings J, Stephen AE, Marres HA, Gaissert HA. The management of thyroid carcinoma invading the larynx or trachea. Laryngoscope. 2010;120(4):682–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Kim KB, Cabanillas ME, Lazar AJ, et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid. 2013;23(10):1277–83.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Kim JH, Leeper RD. Combination adriamycin and radiation therapy for locally advanced carcinoma of the thyroid gland. Int J Radiat Oncol Biol Phys. 1983;9(4):565–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Mahler C, Verhelst J, de Longueville M, Harris A. Long-term treatment of metastatic medullary thyroid carcinoma with the somatostatin analogue octreotide. Clin Endocrinol (Oxf). 1990;33(2):261–9.CrossRefGoogle Scholar
  88. 88.
    Modigliani E, Cohen R, Joannidis S, et al. Results of long-term continuous subcutaneous octreotide administration in 14 patients with medullary thyroid carcinoma. Clin Endocrinol (Oxf). 1992;36(2):183–6.CrossRefGoogle Scholar
  89. 89.
    Janson ET, Oberg K. Long-term management of the carcinoid syndrome. Treatment with octreotide alone and in combination with alpha-interferon. Acta Oncol. 1993;32(2):225–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Skoura E. Depicting medullary thyroid cancer recurrence: the past and the future of nuclear medicine imaging. Int J Endocrinol Metab. 2013;11(4), e8156.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Rufini V, Castaldi P, Treglia G, et al. Nuclear medicine procedures in the diagnosis and therapy of medullary thyroid carcinoma. Biomed Pharmacother. 2008;62(3):139–46.PubMedCrossRefGoogle Scholar
  92. 92.
    Vainas I, Koussis C, Pazaitou-Panayiotou K, et al. Somatostatin receptor expression in vivo and response to somatostatin analog therapy with or without other antineoplastic treatments in advanced medullary thyroid carcinoma. J Exp Clin Cancer Res. 2004;23(4):549–59.PubMedGoogle Scholar
  93. 93.
    American Thyroid Association Surgery Working Group, American Association of Endocrine Surgeons, American Academy of Otolaryngology-Head and Neck Surgery, et al. Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid. 2009;19(11):1153–8.CrossRefGoogle Scholar
  94. 94.
    Tuttle RM, Tala H, Shah J, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20(12):1341–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Vaisman F, Momesso D, Bulzico DA, et al. Spontaneous remission in thyroid cancer patients after biochemical incomplete response to initial therapy. Clin Endocrinol (Oxf). 2012;77(1):132–8.CrossRefGoogle Scholar
  96. 96.
    American Thyroid Association Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214.CrossRefGoogle Scholar
  97. 97.
    Cooper DK, Novitzky D, Wicomb WN, Basker M, Rosendale JD, Myron KH. A review of studies relating to thyroid hormone therapy in brain-dead organ donors. Front Biosci. 2009;14:3750–70.CrossRefGoogle Scholar
  98. 98.
    Rubino C, de Vathaire F, Dottorini ME, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89(9):1638–44.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Sawka AM, Thabane L, Parlea L, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19(5):451–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Vaisman F, Tala H, Grewal R, Tuttle RM. In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response. Thyroid. 2011;21(12):1317–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Pryma DA, Mandel SJ. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. J Nucl Med. 2014;55(9):1485–91.PubMedCrossRefGoogle Scholar
  102. 102.
    Efficace F, Cocks K, Breccia M, et al. Time for a new era in the evaluation of targeted therapies for patients with chronic myeloid leukemia: inclusion of quality of life and other patient-reported outcomes. Crit Rev Oncol Hematol. 2012;81(2):123–35.PubMedCrossRefGoogle Scholar
  103. 103.
    Efficace F, Baccarani M, Rosti G, et al. Investigating factors associated with adherence behaviour in patients with chronic myeloid leukemia: an observational patient-centered outcome study. Br J Cancer. 2012;107(6):904–9.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Mulder SF, Bertens D, Desar IM, et al. Impairment of cognitive functioning during Sunitinib or Sorafenib treatment in cancer patients: a cross sectional study. BMC Cancer. 2014;14:219.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Gray SW, Hicks-Courant K, Lathan CS, Garraway L, Park ER, Weeks JC. Attitudes of patients with cancer about personalized medicine and somatic genetic testing. J Oncol Pract/Am Soc Clin Oncol. 2012;8(6):329–35. 322 p following 335.CrossRefGoogle Scholar
  106. 106.
    Scherubl H, Raue F, Ziegler R. Combination therapy with adriamycin, cisplatin and vindesine in C cell carcinoma of the thyroid. Onkologie. 1990;13(3):198–202.PubMedCrossRefGoogle Scholar
  107. 107.
    Scherubl H, Raue F, Ziegler R. Combination chemotherapy of advanced medullary and differentiated thyroid cancer. Phase II study. J Cancer Res Clin Oncol. 1990;116(1):21–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Leaf AN, Wolf BC, Kirkwood JM, Haselow RE. Phase II study of etoposide (VP-16) in patients with thyroid cancer with no prior chemotherapy: an Eastern Cooperative Oncology Group Study (E1385). Med Oncol. 2000;17(1):47–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Ain KB, Egorin MJ, DeSimone PA. Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Collaborative Anaplastic Thyroid Cancer Health Intervention Trials (CATCHIT) Group. Thyroid. 2000;10(7):587–94.PubMedCrossRefGoogle Scholar
  110. 110.
    Sherman SI, Wirth LJ, Droz JP, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359(1):31–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniel C. McFarland
    • 1
    Email author
  • Indu Varier
    • 2
  • Krzysztof Misiukiewicz
    • 3
  1. 1.Internal Medicine, Division of Hematology and OncologyMount Sinai Medical CenterNew YorkUSA
  2. 2.Department of Otolaryngology—Head and Neck SurgeryBaylor College of MedicineHoustonUSA
  3. 3.Hematology and Medical OncologyMount Sinai HospitalNew YorkUSA

Personalised recommendations