Advertisement

Molecular Profiles and the “Indeterminate” Thyroid Nodule

  • Alireza Najafian
  • Aarti Mathur
  • Martha A. ZeigerEmail author
Chapter

Abstract

Although fine-needle aspiration (FNA) biopsy is the most accurate and reliable diagnostic test available for the evaluation of a thyroid nodule, 20–30 % of FNA results are indeterminate or suspicious. In order to improve upon the diagnostic accuracy of FNA, several ancillary molecular tests have emerged to further refine the diagnostic role of FNA biopsy and improve the accuracy of preoperative diagnosis of indeterminate thyroid lesions. Over the past decade, significant progress has been made in the investigation of these molecular markers, and promising findings have been reported. However, because of the complexity of surgical decision-making processes, the clinical usefulness and impact of these markers remain unclear. This chapter will review the efficacy and potential clinical utility of these molecular markers in preoperative diagnosis of an indeterminate thyroid nodule.

Keywords

Indeterminate thyroid nodule Suspicious thyroid nodule Molecular marker Fine-needle aspiration FNA Thyroid cancer 

References

  1. 1.
    Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med. 1993;328:553–9. doi: 10.1056/NEJM199302253280807.CrossRefPubMedGoogle Scholar
  2. 2.
    Baloch ZW, Cibas ES, Clark DP, Layfield LJ, Ljung BM, Pitman MB, et al. The national cancer institute thyroid fine needle aspiration state of the science conference: a summation. Cytojournal. 2008;5:6. doi: 10.1186/1742-6413-5-6.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Baloch ZW, Fleisher S, LiVolsi VA, Gupta PK. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. Diagn Cytopathol. 2002;26:41–4. doi: 10.1002/dc.10043.CrossRefPubMedGoogle Scholar
  4. 4.
    Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19:1159–65. doi: 10.1089/thy.2009.0274.CrossRefPubMedGoogle Scholar
  5. 5.
    Mathur A, Najafian A, Zeiger MA, Olson MT, Schneider EB. Malignancy risk and reproducibility in atypia of undetermined significance on thyroid cytology. Surgery. 2014;156(6):1471–6. doi: 10.1016/j.surg.2014.08.026.CrossRefPubMedGoogle Scholar
  6. 6.
    Olson MT, Clark DP, Erozan YS, Ali SZ. Spectrum of risk of malignancy in subcategories of “atypia of undetermined significance”. Acta Cytol. 2011;55:518–25. doi: 10.1159/000333232.CrossRefPubMedGoogle Scholar
  7. 7.
    Ryu YJ, Jung YS, Yoon HC, Hwang MJ, Shin SH, Cho JS, et al. Atypia of undetermined significance on thyroid fine needle aspiration: surgical outcome and risk factors for malignancy. Ann Surg Treat Res. 2014;86:109–14. doi: 10.4174/astr.2014.86.3.109.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Ho AS, Sarti EE, Jain KS, Wang H, Nixon IJ, Shaha AR, et al. Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid. 2014;24:832–9. doi: 10.1089/thy.2013.0317.CrossRefPubMedGoogle Scholar
  9. 9.
    Olson MT, Boonyaarunnate T, Aragon Han P, Umbricht CB, Ali SZ, Zeiger MA. A tertiary center’s experience with second review of 3885 thyroid cytopathology specimens. J Clin Endocrinol Metab. 2013;98:1450–7. doi: 10.1210/jc.2012-3898.CrossRefPubMedGoogle Scholar
  10. 10.
    Cibas ES, Baloch ZW, Fellegara G, LiVolsi VA, Raab SS, Rosai J, et al. A prospective assessment defining the limitations of thyroid nodule pathologic evaluation. Ann Intern Med. 2013;159:325–32. doi: 10.7326/0003-4819-159-5-201309030-00006.CrossRefPubMedGoogle Scholar
  11. 11.
    Hirokawa M, Carney JA, Goellner JR, DeLellis RA, Heffess CS, Katoh R, et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol. 2002;26:1508–14.CrossRefPubMedGoogle Scholar
  12. 12.
    Marais R, Marshall CJ. Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surv. 1996;27:101–25.PubMedGoogle Scholar
  13. 13.
    Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014. doi: 10.1002/cncr.29038.PubMedCentralGoogle Scholar
  14. 14.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Park J, Kim W, Hwang T, Lee S, Kim H, Han H, et al. BRAF and RAS mutations in follicular variants of papillary thyroid carcinoma. Endocr Pathol. 2013;24:69–76. doi: 10.1007/s12022-013-9244-0.CrossRefPubMedGoogle Scholar
  16. 16.
    Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216–22.CrossRefPubMedGoogle Scholar
  17. 17.
    Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D, Westra WH. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol. 2004;17:1359–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.CrossRefPubMedGoogle Scholar
  21. 21.
    Cohen Y, Rosenbaum E, Clark DP, Zeiger MA, Umbricht CB, Tufano RP, et al. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res. 2004;15:2761–5.CrossRefGoogle Scholar
  22. 22.
    Adeniran AJ, Theoharis C, Hui P, Prasad ML, Hammers L, Carling T, et al. Reflex BRAF testing in thyroid fine-needle aspiration biopsy with equivocal and positive interpretation: a prospective study. Thyroid. 2011;21:717–23.CrossRefPubMedGoogle Scholar
  23. 23.
    Rossi M, Buratto M, Bruni S, Filieri C, Tagliati F, Trasforini G, et al. Role of ultrasonographic/clinical profile, cytology, and BRAF V600E mutation evaluation in thyroid nodule screening for malignancy: a prospective study. J Clin Endocrinol Metab. 2012;97:2354–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Kleiman DA, Sporn MJ, Beninato T, Crowley MJ, Nguyen A, Uccelli A, et al. Preoperative BRAF(V600E) mutation screening is unlikely to alter initial surgical treatment of patients with indeterminate thyroid nodules: a prospective case series of 960 patients. Cancer. 2013;119:1495–502. doi: 10.1002/cncr.27888.CrossRefPubMedGoogle Scholar
  25. 25.
    Najafian A, Zeiger MA. The role of molecular diagnostic markers in the management of indeterminate and suspicious thyroid nodules. Int J Endocrinol Oncol. 2014;1:49–57. doi: 10.2217/ije.13.4.CrossRefGoogle Scholar
  26. 26.
    Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135:569–77. doi: 10.1043/2010-0664-RAIR.1.PubMedGoogle Scholar
  27. 27.
    Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90. doi: 10.1016/j.cell.2014.09.050.CrossRefGoogle Scholar
  28. 28.
    Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94:2092–8. doi: 10.1210/jc.2009-0247.CrossRefPubMedGoogle Scholar
  29. 29.
    Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96:3390–7. doi: 10.1210/jc.2011-1469.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Cantara S, Capezzone M, Marchisotta S, Capuano S, Busonero G, Toti P, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–9. doi: 10.1210/jc.2009-2103.CrossRefPubMedGoogle Scholar
  31. 31.
    Chudova D, Wilde JI, Wang ET, Wang H, Rabbee N, Egidio CM, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95:5296–304. doi: 10.1210/jc.2010-1087.CrossRefPubMedGoogle Scholar
  32. 32.
    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367:705–15. doi: 10.1056/NEJMoa1203208.CrossRefPubMedGoogle Scholar
  33. 33.
    Lastra RR, Pramick MR, Crammer CJ, LiVolsi VA, Baloch ZW. Implications of a suspicious Afirma test result in thyroid fine-needle aspiration cytology: An institutional experience. Cancer Cytopathol. 2014. doi: 10.1002/cncy.21455.Google Scholar
  34. 34.
    Harrell RM, Bimston DN. Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract. 2014;20:364–9. doi: 10.4158/EP13330.OR.CrossRefPubMedGoogle Scholar
  35. 35.
    McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M, et al. An independent study of a gene expression classifier (Afirma™) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99:jc20133584. doi: 10.1210/jc.2013-3584.Google Scholar
  36. 36.
    Krane JF. Lessons from early clinical experience with the Afirma gene expression classifier. Cancer Cytopathol. 2014. doi: 10.1002/cncy.21472.Google Scholar
  37. 37.
    Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46. doi: 10.1038/nrg2626.CrossRefPubMedGoogle Scholar
  38. 38.
    Le Mercier M, D’Haene N, De Nève N, Blanchard O, Degand C, Rorive S, et al. Next-generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology. Histopathology. 2014. doi: 10.1111/his.12461.PubMedGoogle Scholar
  39. 39.
    Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011;32:177–95.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11:759–69.CrossRefPubMedGoogle Scholar
  41. 41.
    Beadling C, Neff TL, Heinrich MC, Rhodes K, Thornton M, Leamon J, et al. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J Mol Diagn. 2013;15:171–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1852–60. doi: 10.1210/jc.2013-2292.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610. doi: 10.1038/nrg2843.PubMedGoogle Scholar
  44. 44.
    Ma R, Jiang T, Kang X. Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res. 2012;31:38. doi: 10.1186/1756-9966-31-38.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:3584–91.CrossRefPubMedGoogle Scholar
  46. 46.
    Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93:1600–8.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol. 2011;18:2035–41.CrossRefPubMedGoogle Scholar
  48. 48.
    Chen Y-T, Kitabayashi N, Zhou XK, Fahey TJ, Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol. 2008;21:1139–46.CrossRefPubMedGoogle Scholar
  49. 49.
    Schwertheim S, Sheu S-Y, Worm K, Grabellus F, Schmid KW. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res. 2009;41:475–81.CrossRefPubMedGoogle Scholar
  50. 50.
    Tetzlaff MT, Liu A, Xu X, Master SR, Baldwin DA, Tobias JW, et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol. 2007;18:163–73.CrossRefPubMedGoogle Scholar
  51. 51.
    Keutgen XM, Filicori F, Crowley MJ, Wang Y, Scognamiglio T, Hoda R, et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res. 2012;18:2032–8. doi: 10.1158/1078-0432.CCR-11-2487.CrossRefPubMedGoogle Scholar
  52. 52.
    Kitano M, Rahbari R, Patterson EE, Steinberg SM, Prasad NB, Wang Y, et al. Evaluation of candidate diagnostic microRNAs in thyroid fine-needle aspiration biopsy samples. Thyroid. 2012;22:285–91. doi: 10.1089/thy.2011.0313.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Shen R, Liyanarachchi S, Li W, Wakely PE, Saji M, Huang J, et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases. Thyroid. 2012;22:9–16. doi: 10.1089/thy.2011.0081.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Dettmer M, Vogetseder A, Durso MB, Moch H, Komminoth P, Perren A, et al. MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J Clin Endocrinol Metab. 2013;98:E1–7. doi: 10.1210/jc.2012-2694.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Alexander EK, Schorr M, Klopper J, Kim C, Sipos J, Nabhan F, et al. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab. 2014;99:119–25. doi: 10.1210/jc.2013-2482.CrossRefPubMedGoogle Scholar
  56. 56.
    Duick DS, Klopper JP, Diggans JC, Friedman L, Kennedy GC, Lanman RB, et al. The impact of benign gene expression classifier test results on the endocrinologist-patient decision to operate on patients with thyroid nodules with indeterminate fine-needle aspiration cytopathology. Thyroid. 2012;22:996–1001. doi: 10.1089/thy.2012.0180.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Aragon Han P, Olson MT, Fazeli R, Prescott JD, Pai SI, Schneider EB, et al. The impact of molecular testing on the surgical management of patients with thyroid nodules. Ann Surg Oncol. 2014;21:1862–9. doi: 10.1245/s10434-014-3508-x.CrossRefPubMedGoogle Scholar
  58. 58.
    Yip L, Farris C, Kabaker AS, Hodak SP, Nikiforova MN, McCoy KL, et al. Cost impact of molecular testing for indeterminate thyroid nodule fine-needle aspiration biopsies. J Clin Endocrinol Metab. 2012;97:1905–12. doi: 10.1210/jc.2011-3048.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Li H, Robinson KA, Anton B, Saldanha IJ, Ladenson PW. Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2011;96:E1719–26. doi: 10.1210/jc.2011-0459.CrossRefPubMedGoogle Scholar
  60. 60.
    Najafzadeh M, Marra CA, Lynd LD, Wiseman SM. Cost-effectiveness of using a molecular diagnostic test to improve preoperative diagnosis of thyroid cancer. Value Health. 2012;15:1005–13. doi:10.1016/j.jval.2012.06.017.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alireza Najafian
    • 1
  • Aarti Mathur
    • 1
  • Martha A. Zeiger
    • 1
    Email author
  1. 1.Endocrine Surgery, Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations