Skip to main content

Circadian Rhythms in Stomata: Physiological and Molecular Aspects

  • Chapter
  • First Online:
Book cover Rhythms in Plants

Abstract

Stomata are the major route of gas exchange between the atmosphere and the leaf interior. The size of the stomatal pore is controlled by the movements of the stomatal guard cells. The guard cells close the stomatal pore to conserve water during stress. In more favourable conditions, the stomatal movements optimise CO2 uptake whilst minimising water loss. The movements of stomata are controlled by an extensive network of signalling pathways responding to diverse stimuli. One of the regulators of stomata is the circadian clock. We discuss the physiological mechanisms by which the clock might regulate stomatal movements and the benefits that circadian regulation of stomatal behaviour could confer to the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABAR:

ABA receptor

ABH1 :

ABA HYPERSENSITIVE 1

ABI1:

ABSCISIC ACID INSENSITIVE 1

AtMRP5 :

ARABIDOPSIS MULTIDRUG RESISTANCE-RELATED PROTEIN 1

AtRbohD :

ARABIDOPSIS RESPIRATORY BURST OXIDASE HOMOLOGUE 5

AKT2/3 :

ARABIDOPSIS K + TRANSPORTER 2/3

[Ca2+]cyt :

Concentration of cytosolic free calcium

CAB2 :

CHLOROPHYLL A/B BINDING PROTEIN 2

cADPR:

Cyclic adenosine diphosphate ribose

CAM:

Crassulacean acid metabolism

CBF:

C-REPEAT BINDING FACTOR

CCA1:

CIRCADIAN CLOCK ASSOCIATED 1

CCR2 :

COLD, CIRCADIAN, RHYTHM 2

Ci:

Intercellular CO2 concentration

CK:

Cytokinin

CK2:

CAESIN KINASE 2

CO:

CONSTANS

CPK:

Ca2+-dependent protein kinase

DD:

Continuous darkness

EE:

Evening Element

ELF3 :

EARLY FLOWERING 3

ELF4 :

EARLY FLOWERING 4

FT:

FLOWERING LOCUS T

FV:

Fast vacuolar channel

GI :

GIGANTEA

GORK :

GUARD CELL-EXPRESSED OUTWARD-RECTIFYING K + CHANNEL

IAA:

Indole-3-acetic acid

Ins(1,4,5)P3 :

Inositol (1,4,5) trisphosphate

InsP6 :

Inositol hexakisphosphate

IRGA:

Infrared gas analysis

LHY:

LATE ELONGATED HYPOCOTYL

LKP2:

LIGHT, OXYGEN, VOLTAGE/KELCH PROTEIN 2

LL:

Continuous light

LUC :

LUCIFERASE

LUX :

LUX ARRHYTHMIO

NADPH:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

OST1:

OPEN STOMATA 1

PEPC:

Phosphoenolpyruvate carboxylase

PHYB :

PHYTOCHROME B

PRR :

PSEUDO RESPONSE REGULATOR

PP2C:

Protein phosphatase 2C

PtdIns(3)P:

Phosphatidylinositol 3-phosphate

PtdIns(4)P:

Phosphatidylinositol 4-phosphate

PYL:

PYRABACTIN RESISTANCE-LIKE

ROS:

Reactive oxygen species

SLAC1:

SLOW ANION CHANNEL 1

SnRK:

SNF-1-RELATED KINASE

SV:

Slow vacuolar channel

TOC1 :

TIMING OF CAB EXPRESSION 1

TPC1 :

TWO PORE CHANNEL 1

TPK1 :

TWO PORE K + CHANNEL 1

VK:

Vacuolar K+ channel

ZTL :

ZEITLUPE

References

  • Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    Article  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J 10:1055–1069

    Article  CAS  PubMed  Google Scholar 

  • Ando E, Ohnisi Y, Wang Y, Matsushita T, Watanbe A, Hayashi Y, Fujii M, Ma JF, Inoue S, Kinoshita T (2013) Twin Sister of FT, Gigantea and Constans Have a Positive but Indirect Effect on Blue-Light Induced Stomatal Opening in Arabidopsis. Plant Physiol 162:1529–1538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Assmann SM, Wang XQ (2001) From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol 4:421–428

    Article  CAS  PubMed  Google Scholar 

  • Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible W-R, Stitt Mark (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17:3257–3281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blatt MR, Armstrong F (1993) K+ channels of stomatal guard cells: abscisic-acid-evoked control of the outward rectifier mediated by ctyoplasmic pH. Planta 191:330–341

    Article  CAS  Google Scholar 

  • Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjärvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI (2012) Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci USA 109:10593–10598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Hills A, Bätz U, Amtmann A, Lew VL, Blatt MR (2012) Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol 159:1235–1251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Correia MJ, Pereira JS, Chaves MM, Rodrigues ML, Pacheco CA (1995) ABA xylem concentrations determine maximum daily leaf conductance of field grown Vitis vinefera L. plants. Plant Cell Env 18:511–521

    Article  CAS  Google Scholar 

  • Dalchau N, Hubbard KE, Hotta CT, Robertson FC, Briggs HM, Stan G-B, Gonçalves JM, Webb AAR (2010) Correct biological timing in Arabidopsis requires multiple light signalling pathways. Proc Nat Acad Sci (USA). 107:13171–13176

    Article  CAS  Google Scholar 

  • Dios VR, Goulden ML, Ogle K, Richardson AD, Hollinger DY, Davidson EA, Alday JG, Barron-Gafford GA, Carrara A, Kowalski AS, Oechel WC, Reverter BR, Scott RL, Varner RK, Díaz-Sierra R, Moreno JM (2012) Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Glob Chang Biol 18:1956–1970

    Article  Google Scholar 

  • Dodd AN, Parkinson K, Webb AAR (2004) Independent circadian regulation of assimilation and stomatal conductance in the ztl-1 mutant of Arabidopsis. New Phyt 162:63–70

    Article  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kyed Jakobsen M, Baker AJ, Telzerow A, Hou S-W, Laplaze L, Barrot L, Poethig RS, Haseloff JM, Webb AAR (2006) Time of day modulation of Ca2 + signals in Arabidopsis. Plant J 48:962–973

    Google Scholar 

  • Dodd AN, Gardner MJ, Hotta CT, Hubbard KE, Dalchau N, Love J, Assie JM, Robertson FC, Kyed Jakobsen M, Gonçalves J, Sanders D, Webb AAR (2007) A cADPR-based feedback loop modulates the Arabidopsis circadian clock. Science 318:1789–1792

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Gardner MJ, Baek S-J, Dalchau N, Webb AAR (2014) The circadian clock has transient plasticity of period and is required for timing of nocturnal processes in Arabidopsis. New Phytol 201:168–179

    Article  PubMed  Google Scholar 

  • Dong MA, Farré EM, Thomashow MF (2011) Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci 108:7241–7246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18:639–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards CE, Ewers BE, Williams DG, Xie Q, Lou P, Xu X, McClung CR, Weinig C (2011) The genetic architecture of ecophysiological and circadian traits in Brassica rapa. Genetics 189:375–390

    Article  PubMed Central  PubMed  Google Scholar 

  • Edwards CE, Ewers BE, McClung CR, Lou P, Weinig C (2012) Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits. Mol Plant 5:653–668

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Shimizu H, Nohales MA, Araki T, Kay SA (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 7527:419–422

    Article  CAS  Google Scholar 

  • Eriksson ME, Hanno S, Southern MM, Hall A, Millar AJ (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta 218:159–162

    Article  CAS  PubMed  Google Scholar 

  • Eskling M, Arvidsson P-O, Akerlund H-E (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816

    Article  CAS  Google Scholar 

  • Fogelmark K, Troein C (2014) Rethinking transcriptional activation in the Arabidopsis circadian clock. PLoS Comput Biol 10(7):e1003705

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K (2009) In vitro reconstitution of an abscisic acid signaling pathway. Nature 462:660–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signalling pathways. Proc Natl Acad Sci USA 100:11116–11121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardner MJ, Baker AJ, Assie J-M, Poethig RS, Haseloff JP, Webb AAR (2009) GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression. J Exp Bot 60:213–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gehring CA, Irving HR, Parish RW (1990) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci USA 87:9645–9649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106:21425–21430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci 109:3167–3172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769–771

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorton HL, Williams WE, Binns ME, Gemmell CN, Leheny EA, Shepherd AC (1989) Circadian stomatal rhythms in epidermal peels from Vicia faba. Plant Physiol 90:1329–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorton HL, Williams WE, Asmann SM (1993) Circadian rhythms in stomatal responsiveness to red and blue light. Plant Physiol 103:399–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gosti F, Beudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) The ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1883–1896

    Article  Google Scholar 

  • Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of tempertaure compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grabov A, Blatt MR (1997) Parallel control of the inward rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. Planta 201:84–95

    Article  CAS  Google Scholar 

  • Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci 107:9458–9463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Google Scholar 

  • Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AAR (2013) Photosynthetic entrainment of the Arabidopsis circadian clock. Nature 502:689–692

    Article  CAS  PubMed  Google Scholar 

  • Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA (2011) LUX ARRHYTHMO encodes a night time repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 21:126–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hennessey TL, Field CB (1991) Circadian rhythms in photosynthesis: oscillations in carbon assimilation and stomatal conductance under constant conditions. Plant Physiol 96:831–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns M, Coupland G, Saini R, Jaskolski M, Webb AAR, Gonçalves JM, Davis SJ (2012) EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 24:428–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hetherington AM, Grey JE, Leckie C, McAinsh MR, Ng C, Pical C, Priestley AJ, Staxén I, Webb AAR (1998) The control of specificity in guard cell signal transduction. Phil Trans Roy Soc Lond B 353:1489–1494

    Article  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hills A, Chen ZH, Amtmann A, Blatt MR, Lew VL (2012) OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holmes MG, Klein WH (1986) Photocontrol of dark circadian rhythms in stomata of Phaseolus vulgaris L. Plant Physiol 82:28–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hosy E, Vavassuer A, Mouline K, Dreyer I, Gaymard I, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Adac Sci USA 100:5549–5554

    Article  CAS  Google Scholar 

  • Hsu PY, Devisetty UK, Harmer SL (2013) Accurate timekeeping is controlled by a cycling activator in Arabidopsis. Elife. 2

    Google Scholar 

  • Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protien, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487

    Article  CAS  PubMed  Google Scholar 

  • Hsu PY, Harmer SL (2014) Wheels within wheels: the plant circadian system. Trends Plant Sci 19:240–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Haley A, Trewavas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269:1863–1865

    Article  CAS  PubMed  Google Scholar 

  • Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y (2002) Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell 14:2399–2412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Mishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of Fava bean. Plant Cell 7:1333–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S, Shimizaki, K (2011) FLOWERING LOCUS T Regulates Stomatal Opening. Curr Biol 21:1232–1238

    Google Scholar 

  • Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signalling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kollist H, Nuhkat M, Roelfsema MRG (2014) Closing gaps: linking elements that control stomatal movement. New Phytol 203:44–62

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic Acid 8’-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118:849–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP- ribose. Proc Natl Acad Sci USA 95:15837–15842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Legnaioli T, Cuevas J, Mas P (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J 28:3745–3757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev 15:1808–1816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearly CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 97:8687–8692

    Article  Google Scholar 

  • Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4:e312

    Google Scholar 

  • Locke JC, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005a) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1(2005):0013

    PubMed  Google Scholar 

  • Locke JCW, Millar AJ, Turner MS (2005b) Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol 234:383–393

    Article  CAS  PubMed  Google Scholar 

  • Love J, Dodd AN, Webb AAR (2004) Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 17:3257–3281

    Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Martí MC, Stancombe MA, Webb AAR (2013) Cell- and stimulus-type-specific cytosolic-free Ca2+ signals in Arabidopsis thaliana. Plant Physiol 163:625–634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41:1002–1012

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stpmatal closure. Nature 343:186–188

    Article  CAS  Google Scholar 

  • McAinsh MR, Webb A, Taylor JE, Hetherington AM (1995) Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell 7:1207–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, Givan SA, Yanovsky M, Hong F, Kay SA, Chory J (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4:e14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55:277–283

    Article  CAS  PubMed  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene expression in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y-F et al (2006) CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca2+- Permeable Channels and Stomatal Closure. PLoS Biol 4(10):e327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Hirofumi U, Mimi H, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    Article  CAS  PubMed  Google Scholar 

  • Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:569–599

    Google Scholar 

  • Noordally ZB, Ishii K, Atkins KA, Wetherill SJ, Kusakina J, Walton EJ, Kato M, Azuma M, Tanaka K, Hanaoka M, Dodd AN (2013) Circadian control of chloroplast transcription by a nuclear-encoded timing signal. Science 339:1316–1319

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pallas JE Jr, Samish YB, Willmer CM (1974) Endogenous rhythmic activity of photosynthesis, transpiration, dark respiration and carbon dioxide compensation point of peanut leaves. Plant Physiol 53:907–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T-fF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu J-K, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    Google Scholar 

  • Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+ activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh CS, Bruce VG (1959) Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. In: Withrow RB et al. (eds) Photoperiodism and related phenomena in plants and animals. Washington, A.A.A.S pp 465–505

    Google Scholar 

  • Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno T, Millar AJ (2010) Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Mol Syst Biol 6:416

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8(1)

    Google Scholar 

  • Pokhilko A, Mas P, Millar A (2013) Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs. BMC Syst Biol 7:23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Risk JM, Day CL, MacKnight RC (2009) Reevaluation of abscisic acid-binding assays shows that G-protein-coupled receptor2 does not bind abscisic acid. Plant Physiol 150:6–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signalling. Plant Cell 14:S401–S417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Uozumi N (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2. 6 protein kinase. Biochem J 424:439–448

    Article  CAS  PubMed  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) LATE ELONGATED HYPOCOTYL, an Arabidopsis gene encoding a MYB transcription factor, regulates circadian rhythmicity and photoperiodic responses. Cell 93:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Ann Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  CAS  Google Scholar 

  • Sharpe PJH, Wu H, Spence RD (1987) Stomatal mechanics. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Standford, pp 91–114

    Google Scholar 

  • Shope JC, EdWald DB, Mott KA (2003) Changes in surface area of intact guard cells are correlated with membrane internalization. Plant Physiol 133:1314–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snaith PJ, Mansfield TA (1985) Responses of stomata to IAA and fusicoccin at the opposite phases of an entrained rhythm. J Exp Bot 36:937–944

    Article  CAS  Google Scholar 

  • Snaith PJ, Mansfield TA (1986) The circadian rhythm of stomatal opening—evidence for the involvement of potassium and chloride fluxes. J Exp Bot 37:188–199

    Article  Google Scholar 

  • Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Kwak JM (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Webb AAR, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125:485–494

    CAS  PubMed  Google Scholar 

  • Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329

    Article  CAS  PubMed  Google Scholar 

  • Stadler R, Buttner M, Ache P, Hedrich R, Ivashikina N, Melzer M, Shearson SM, Smith SM, Sauer N (2003) Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. Plant Physiol 133:528–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stålfelt MG (1963) Diurnal dark reactions in the stomatal movements. Physiol Plant 16:756–766

    Article  Google Scholar 

  • Staxén I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96:1779–1784

    Article  PubMed Central  PubMed  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    Article  CAS  PubMed  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tallman G (2004) Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J Exp Bot 55:1963–1976

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2006) Cytokinin and auxin inhibit abscisic acid-induced stomatal closse by enhancing ehtylene production in Arabidopsis. J Exp Bot 57:2259–2266

    Article  CAS  PubMed  Google Scholar 

  • Tang RH, Han S, Zheng H, Cook CW, Choi CS, Woerner TE, Jackson RB, Pei ZM (2007) Coupling diurnal cytosolic Ca2 + oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315:1423–1426

    Article  CAS  PubMed  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signalling in Arabidopsis guard cells. Science 292:2070–2072

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Tobin EM (1998) Constituitive expression of the CIRCADIAN CLOCK ASSOCIATED (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-Activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webb AAR, Larman MG, Montgomery LT, Taylor JE, Hetherington AM (2001) The role of calcium in ABA-induced gene expression and stomatal movements. Plant J 26:351–362

    Article  CAS  PubMed  Google Scholar 

  • Webb AAR (2003) The physiology of circadian rhythms in plants. New Phytol 160:281–303

    Article  CAS  Google Scholar 

  • Webb AAR (1998) Stomatal rhythms. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. Bios Scientific Publishers pp 69–80

    Google Scholar 

  • Xiong L, Zhu J-K (2003) Regulation of Abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yakir E, Hassidim M, Melamed-Book N, Hilman D, Kron I, Green RM (2011) Cell autonomous and cell-type specific circadian rhythms in Arabidopsis. Plant J 68:520–531

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2. 6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    Article  CAS  PubMed  Google Scholar 

  • Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715

    Article  CAS  PubMed  Google Scholar 

  • Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA 103:7506–7511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang SQ, Outlaw WH Jr (2001) Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant Cell Env 24:1045–1054

    Article  CAS  Google Scholar 

  • Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H (2013) Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 9:e1003370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex A. R. Webb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hubbard, K.E., Webb, A.A.R. (2015). Circadian Rhythms in Stomata: Physiological and Molecular Aspects. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-20517-5_9

Download citation

Publish with us

Policies and ethics