Skip to main content

Systems Biology Analysis of Changes in Potential Across Plasma Membrane: Physiological Implications

  • Chapter
  • First Online:
Rhythms in Plants

Abstract

Variation of the membrane potential difference (PD) across plasma membrane is considered in terms of one or more ion transporter populations changing their conductance and activation kinetics. Slow changes occurring over minutes can be investigated by the current voltage (I/V) technique. In some cases, data are sufficient to model electrical characteristics of each transporter population and their evolution with time. The proton pump at the plasma membrane of the salt-sensitive Characeae Chara australis provides an example of single transporter changing conductance against a steady background. The rise and fall in proton pump conductance may be prompted by circadian oscillations of indoleamines IAA and melatonin, measured in growing thalli of characean plants. In response to abiotic stress, two or more transporter populations change conductance and/or PD dependence. The voltage clamp to extreme negative PD levels transiently inhibits the proton pump in C. australis, activating H+/OH channels, increasing the background conductance, and opening inward rectifier channels at more depolarized PDs. An increase in medium salinity (after pre-treatment with isotonic sorbitol medium) results in similar response, which is preceded by a typical noise in membrane PD. In salt-tolerant Characeae Lamprothamnium sp., increase in salinity (or osmolarity) provokes an increase in proton pumping as well as increase in background conductance and opening of the inward rectifier channels at more depolarized PDs to effect turgor regulation. The hypoosmotic turgor regulation also involves a complex interaction of several transporters, initiated by the increase of turgor pressure , [Ca2+]cyt increase, and PD changes. A detailed modeling is in progress for most of these responses. The examples demonstrate the analytical and predictive power of the I/V methodology coupled with the systems biology modeling and monitoring of biochemical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Khazaaly S (2011) Modelling electrophysiological responses of Characeae to salt and osmotic stress. Ph.D. Thesis. School of Physics, Sydney, Australia, The University of NSW

    Google Scholar 

  • Al Khazaaly S, Beilby MJ (2007) Modeling ion transporters at the time of hypertonic regulation Lamprothamnium succinctum (Characeae, Charophyceae). Charophytes 1(1):28–47

    Google Scholar 

  • Al Khazaaly S, Beilby MJ (2012) Zinc ion blocks H+/OH channels in Chara australis. Plant, Cell Environ 35:1380–1392

    Article  CAS  Google Scholar 

  • Al Khazaaly S, Walker NA, Beilby MJ, Shepherd VA (2009) Membrane potential fluctuations in Chara australis: a characteristic signature of high external sodium. Eur Biophys J 39:167–174

    Article  CAS  PubMed  Google Scholar 

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:75–112

    Article  CAS  Google Scholar 

  • Beilby MJ (1984) Current-voltage characteristics of the proton pump at Chara plasmalemma. I. pH dependence. J Membr Biol 81:113–125

    Article  Google Scholar 

  • Beilby MJ (1985) Potassium channels at Chara plasmalemma. J Exp Bot 36:228–239

    Article  CAS  Google Scholar 

  • Beilby MJ (1986) Potassium channels and different states of Chara plasmalemma. J Membr Biol 89:241–249

    Article  CAS  Google Scholar 

  • Beilby MJ (1990) Current-voltage curves for plant membrane studies: a critical analysis of the method. J Exp Bot 41:165–182

    Article  Google Scholar 

  • Beilby MJ, Al Khazaaly S (2009) The role of H+/OH channels in salt stress response of Chara australis. J Membr Biol 230:21–34

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ, Casanova MT (2013) The physiology of characean cells. Springer, Berlin

    Google Scholar 

  • Beilby MJ, Shepherd VA (1996) Turgor regulation in Lamprotamnium papulosum: I. I/V analysis and pharmacological dissection of the hypotonic effect. Plant, Cell Environ 19:837–847

    Article  Google Scholar 

  • Beilby MJ, Shepherd VA (2001a) Modeling the current-voltage characteristics of charophyte membranes: II. The effect of salinity on membranes of Lamprothamnium papulosum. J Membr Biol 181:77–89

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ, Shepherd VA (2001b) Modeling the current-voltage characteristics of charophyte membranes: III. K+ state of Lamprothamnium. Austr J Plant Physiol 28:541–550

    CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (2006a) The characteristics of Ca2+-activated Cl channels of the salt-tolerant charophyte Lamprothamnium. Plant, Cell Environ 29:764–777

    Article  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (2006b) The electrophysiology of salt tolerance in charophytes. Cryptogamie Algologie 27:403–417

    Google Scholar 

  • Beilby MJ, Walker NA (1981) Chloride transport in Chara: I. Kinetics and current-voltage curves for a probable proton symport. J Exp Bot 32:43–54

    Article  CAS  Google Scholar 

  • Beilby MJ, Walker NA (1996) Modeling the current-voltage characteristics of Chara membranes: I. The effect of ATP removal and zero turgor. J Membr Biol 149:89–101

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ, Cherry CA, Shepherd VA (1999) Dual turgor regulation response to hypotonic stress in Lamprothamnium papulosum. Plant, Cell Environ 22:347–360

    Article  CAS  Google Scholar 

  • Beilby MJ, Bisson MA, Shepherd VA (2006) Electrophysiology of turgor regulation in charophyte cells. In: Volkov AG (ed) Plant electrophysiology—theory and methods. Springer, Berlin, pp 375–406

    Chapter  Google Scholar 

  • Beilby MJ, Al Khazaaly S, Bisson MA (2014) Salinity-induced noise in membrane potential of Characeae Chara australis: effect of exogenous melatonin. J Membr Biol 248:93–102

    Google Scholar 

  • Bisson MA (1986) Inhibitors of proton pumping. Effect on passive proton transport. Plant Physiol 81:55–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bisson MA, Kirst GO (1980) Lamprothamnium, a euryhaline charophyte: I. Osmotic relations and membrane potential at steady state. J Exp Bot 31:1223–1235

    Article  CAS  Google Scholar 

  • Blatt MR, Beilby MJ, Tester M (1990) Voltage dependence of the Chara proton pump revealed by current-voltage measurement during rapid metabolic blockade with cyanide. J Membr Biol 114:205–223

    Article  CAS  PubMed  Google Scholar 

  • Boccalandro HE, Gonzalez CV, Wunderlin DA, Silva MF (2011) Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 51:226–232

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski A (1997) Melatonin in humans. N Engl J Med 336:186–195

    Article  CAS  PubMed  Google Scholar 

  • Casanova MT (2013) Lamprothamnium in Australia (Characeae, Charophyceae). Aust Syst Bot 26:268–290

    Article  Google Scholar 

  • Coleman HA, Findlay GP (1985) Ion channels in the membrane of Chara inflata. J Membr Biol 83:109–118

    Article  CAS  Google Scholar 

  • Covington MF, Harmer SL (2007) The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol 5(8):e222

    Article  PubMed Central  PubMed  Google Scholar 

  • Cuin TA (2007) Molecular aspects of the Arabidopsis circadian clock. In: Mancuso S, Shabala S (eds) Rhytms in plants, Chap 12. Springer, Berlin, pp 245–264

    Google Scholar 

  • DeCoursey TE (2013) Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the Hv family. Physiol Rev 93:599–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of non-selective cation channels in plants: from stress to signaling and development. New Physiol 175:387–404

    Article  CAS  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eremin A, Bulychev A, Hauser MJB (2013) Cyclosis-mediated transfer of H2O2 elicited by localized illumination of Chara cells and its relevance to the formation of pH bands. Protoplasma 250:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Felle H, Brummer B, Bertl A, Parish RW (1986) Indole-3-acetic acid and fusicoccin cause cytosolic acidification of corn coleoptile cells. Proc Natl Acad Sci USA 83:8992–8995

    Google Scholar 

  • Felle H, Peters W, Palme K (1991) The electrical response of maize to auxins. Biochim Biophys Acta 1064:199–204

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Wang M, Zhao Y, Hana P, Dai Y (2014) Melatonin from different fruit sources, functional roles, and analytical methods. Trends Food Sci Technol 37:21–31

    Article  CAS  Google Scholar 

  • Hansen UP, Gradmann D, Sanders D, Slayman CL (1981) Interpretation of current-voltage relationships for “active” transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. J Membr Biol 63:165–190

    Article  CAS  PubMed  Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, London

    Google Scholar 

  • Jouve J, Gaspar T, Kevers C, Greppin H, Degli Agosti R (1999) Involvement of indole-3-acitic acid in the circadian growth of the first internode of Arabidopsis. Planta 209:136–142

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Kong K, Park S, Natsagdorj U, Kim YS, Back K (2011) Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. J Pineal Res 50:304–309

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Lee K, Park S, Byeon Y, Back K (2012) Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J Pineal Res 55:7–13

    Article  PubMed  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353

    Article  CAS  PubMed  Google Scholar 

  • Kirst GO, Bisson MA (1982) Vacuolar and cytoplasmic pH, ion composition and turgor pressure in Lamprothamnium as function of external pH. Planta 155:287–295

    Article  CAS  PubMed  Google Scholar 

  • Lazar D, Murch SJ, Beilby MJ, Al Khazaaly S (2013) Exogenous melatonin affects photosynthesis in Characeae Chara australis. Plant Signal Behav 8(3):e23279

    Google Scholar 

  • Lucas WJ (1982) Mechanism of acquisition of exogenous bicarbonate by internodal cells of Chara corallina. Planta 156:181–192

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mimura T, Shimmen T, Tazawa M (1983) Dependence of the membrane potential on intracellular ATP concentration in tonoplast-free cells of Nitellopsis obtusa. Planta 157:97–104

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Saxena PK (2002) Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort (Hypericum perforatum L.)? Naturwissenschaften 89:555–560

    CAS  PubMed  Google Scholar 

  • Murch SJ, Campbell SSB, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: regulation of auxin induced root organogenesis in in vitro-cultured explants of St. John’s wort (Hypericum perforatum L.). In Vitro Cell Dev Biol Plant 37:786–793

    Article  CAS  Google Scholar 

  • Murch SJ, Ali AR, Cao J, Saxena PK (2009) Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47:277–283

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Hall BA, Le CH, Saxena PK (2010) Changes in the levels of indoleamine phytochemicals in véraison and ripening of wine grapes. J Pineal Res 49:95–100

    CAS  PubMed  Google Scholar 

  • Novakova M, Motyka V, Dobrev PI, Malbeck J, Gaudinova A, Vankova R (2005) Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves. J Exp Bot 56:2877–2883

    Article  CAS  PubMed  Google Scholar 

  • Paredes SD, Korkmaz A, Manchester LC, Tan D-X, Reiter RJ (2009) Phytomelatonin: a review. J Exp Bot 60:57–69

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee K, Kim YS, Back K (2011) Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. J Pineal Res 52:211–216

    Article  PubMed  Google Scholar 

  • Pavlova L, Krekule J (1984) Fluctuation of free IAA under inductive and non-inductive photoperiods in Chenopodium rubrum. Plant Growth Regul 2:91–98

    Article  CAS  Google Scholar 

  • Poeggeler B, Balzer I, Hardeland R, Lerchl A (1991) Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 78:268–269

    Article  CAS  Google Scholar 

  • Posmyk MM, Janas KM (2009) Melatonin in plants. Acta Physiol Plant 31:1–11

    Article  CAS  Google Scholar 

  • Senn AP, Goldsmith MHM (1988) Regulation of electrogenic proton pumping by auxin and fusicoccin as related to the growth of Avena coleoptiles. Plant Physiol 88:131–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shepherd VA, Beilby MJ (1999) The effect of an extracellular mucilage on the response to osmotic shock in the charophyte alga Lamprothamnium papulosum. J Membr Biol 170:229–242

    Article  CAS  PubMed  Google Scholar 

  • Shepherd VA, Beilby MJ, Heslop D (1999) Ecophysiology of the hypotonic response in the salt-tolerant charophyte alga Lamprothamnium papulosum. Plant, Cell Environ 22:333–346

    Article  Google Scholar 

  • Shepherd VA, Shimmen T, Beilby MJ (2001) Mechanosensory ion channels in Chara: the influence of cell turgor pressure on touch-activated receptor potentials and action potentials. Austr J Plant Physiol 28:551–566

    CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Shimmen T (2002) Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. Eur Biophys J 31:341–355

    Article  CAS  PubMed  Google Scholar 

  • Shepherd VA, Beilby MJ, Al Khazaaly S, Shimmen T (2008) Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport. Plant, Cell Environ 31:1575–1591

    Article  CAS  Google Scholar 

  • Smith PT, Walker NA (1981) Studies on the perfused plasmalemma of Chara corallina: I. Current-voltage curves: ATP and potassium dependence. J Membr Biol 60:223–236

    Article  CAS  Google Scholar 

  • Tan D-X, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ (2007) Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 21:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Thiel G, Homann U, Gradmann D (1993) Microscopic elements of electrical excitation in Chara: transient activity of Cl channels in the plasma membrane. J Membr Biol 134:53–66

    Article  CAS  PubMed  Google Scholar 

  • Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PloS ONE 7(1):e29696

    Google Scholar 

  • Torn K, Beilby MJ, Casanova MT, Al Khazaaly S (2014) Formation of extracellular sulphated polysaccharide mucilage on the salt tolerant Characeae. Int Rev Hydrobiol 98:1–9

    Google Scholar 

  • Tyerman S (2002) Nonselective cation channels multiple functions and commonalities. Plant Physiol 128:327–328

    Article  CAS  PubMed Central  Google Scholar 

  • Tyerman SD, Findlay GP, Paterson GJ (1986a) Inward membrane current in Chara inflata: I. A voltage- and time-dependent Cl component. J Membr Biol 89:139–152

    Article  CAS  Google Scholar 

  • Tyerman SD, Findlay GP, Paterson GJ (1986b) Inward membrane current in Chara inflata: II. Effects of pH, Cl channel blockers and NH4 + and significance for the hyperpolarized state. J Membr Biol 89:153–161

    Article  CAS  Google Scholar 

  • Tyerman SD, Beilby MJ, Whittington J, Juswono U, Newman I, Shabala S (2001) Oscillations in proton transport revealed from simultaneous measurements of net current and net proton fluxes from isolated root protoplasts: MIFE meets patch-clamp. Austr J Plant Physiol 28:591–604

    CAS  Google Scholar 

  • Van Tassel DL, Roberts N, Lewy A, O’Neil SD (2001) Melatonin in plant organs. J Pineal Res 31:8–15

    Article  PubMed  Google Scholar 

  • Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca2+ liberation during action potential in the giant alga Chara. J Gen Physiol 118:11–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker NA (1955) Microelectrode experiments on Nitella. Aust J Biol Sci 8:476–489

    CAS  Google Scholar 

  • Wodniok S, Brinkmann H, Glockner G, Heidel AJ, Philippe H, Melkonian M, Becker B (2011) Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 11:104–114

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolf K, Kolář J, Witters E, van Dongen W, van Onckelen H, Macháčková I (2001) Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J Plant Physiol 158:1491–1493

    Article  CAS  Google Scholar 

  • Wu L-J (2014) Voltage-gated proton channel HV1 in microglia. Neuroscientist 20:599–609

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhao B, Zhang H-J, Weeda S, Yang C, Yang Z-C, Ren S, Guo Y-D (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Beilby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beilby, M.J., Turi, C.E., Murch, S.J. (2015). Systems Biology Analysis of Changes in Potential Across Plasma Membrane: Physiological Implications. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-20517-5_13

Download citation

Publish with us

Policies and ethics