Skip to main content

Emergent Oscillatory Properties in Modelling Ion Transport of Guard Cells

  • Chapter
  • First Online:
Rhythms in Plants

Abstract

Transport across eukaryotic cell membranes, including those of plant cells, is so complex that it defies intuitive understanding. Quantitative systems modelling is essential in these circumstances, to test our understanding of the system through the experimental scrutiny of predictions. OnGuard is the first, fully integrated and quantitative modelling package developed for the study of cellular homoeostasis in guard cells and its relevance to stomatal aperture dynamics. It offers a unique tool for exploring the properties arising from interactions between plasma membrane and tonoplast transporters with the processes involved in the control of pH, ionic and neutral osmolite concentrations, membrane potentials and ion buffering in cytoplasm and vacuole. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, opening the way towards ‘reverse-engineering’ of stomatal guard cells with the aim of improving water-use efficiency. We focus here on the fundamental insights OnGuard models offer for understanding the physiological phenomena of oscillations in membrane voltage, cytosolic-free Ca2+ concentration, and their roles in stomatal movements. OnGuard models faithfully reproduce differences in stomatal closure with oscillation frequency, much as observed in vivo and including an optimal cycle period. Analysis shows that these oscillations arise from the balance of transport activities at the plasma membrane and tonoplast to generate a range of resonant frequencies. The lowest frequencies are of sufficient duration to permit substantial changes in cytosolic-free Ca2+ concentration. Thus, we demonstrate the oscillations as an emergent property of the system of transport at the two dominant membranes of the guard cell.

Carla Minguet-Parramona and Yizhou Wang are co-first authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre J, Lassalles JP, Kado RT (1990) Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature 343:567–570

    CAS  Google Scholar 

  • Allen GJ, Sanders D (1995) Calcineurin, a type 2B protein phosphatase, modulates the Ca2+ permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7:1473–1483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffman T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    CAS  PubMed  Google Scholar 

  • Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt MR (1995) Sensitivity to abscisic acid of guard cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA 92:9520–9524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S (2011) Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol 62:25–51

    CAS  PubMed  Google Scholar 

  • Beyhl D, Hortensteiner S, Martinoia E, Farmer EE, Fromm J, Marten I, Hedrich R (2009) The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. Plant Journal 58:715–723

    CAS  PubMed  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P 3—and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    CAS  PubMed  Google Scholar 

  • Blatt MR (1987) Electrical characteristics of stomatal guard cells: the ionic basis of the membrane potential and the consequence of potassium chloride leakage from microelectrodes. Planta 170:272–287

    CAS  PubMed  Google Scholar 

  • Blatt MR (1988) Mechanisms of fusicoccin action: a dominant role for secondary transport in a higher-plant cell. Planta 174:187–200

    CAS  PubMed  Google Scholar 

  • Blatt MR (1992) K+ channels of stomatal guard cells: characteristics of the inward rectifier and its control by pH. J Gen Physiol 99:615–644

    CAS  PubMed  Google Scholar 

  • Blatt MR (2000) Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241

    CAS  PubMed  Google Scholar 

  • Blatt MR, Armstrong F (1993) K+ channels of stomatal guard cells: abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191:330–341

    CAS  Google Scholar 

  • Blatt MR, Gradmann D (1997) K+ -sensitive gating of the K+ outward rectifier in Vicia guard cells. J Membr Biol 158:241–256

    CAS  PubMed  Google Scholar 

  • Blatt MR, Slayman CL (1987) Role of “active” potassium transport in the regulation of cytoplasmic pH by nonanimal cells. Proc Natl Acad Sci USA 84:2737–2741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blatt MR, Thiel G (1994) K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin. Plant Journal 5:55–68

    CAS  PubMed  Google Scholar 

  • Blatt MR, Rodriguez-Navarro A, Slayman CL (1987) Potassium-proton symport in Neurospora: kinetic control by pH and membrane potential. J Membr Biol 98:169–189

    CAS  PubMed  Google Scholar 

  • Blatt MR, Thiel G, Trentham DR (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5- trisphosphate. Nature 346:766–769

    CAS  PubMed  Google Scholar 

  • Blatt MR, Garcia-Mata C, Sokolovski S (2007) Membrane transport and Ca2+ oscillations in guard cells. In: Mancuso S, Shabala S (eds) Rhythms in plants. Springer, Berlin, pp 115–134

    Google Scholar 

  • Blatt MR, Wang Y, Leonhardt N, Hills A (2014) Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells. J Plant Physiol 171:770–778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonza MC, De Michelis MI (2011) The plant Ca2+ -ATPase repertoire: biochemical features and physiological functions. Plant Biology 13:421–430

    CAS  PubMed  Google Scholar 

  • Chen ZH, Hills A, Lim CK, Blatt MR (2010) Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J 61:816–825

    CAS  PubMed  Google Scholar 

  • Chen ZH, Hills A, Baetz U, Amtmann A, Lew VL, Blatt MR (2012) Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol 159:1235–1251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho D, Kim SA, Murata Y, Lee S, Jae SK, Nam HG, Kwak JM (2009) De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+ -programmed stomatal closure. Plant J 58:437–449

    CAS  PubMed  Google Scholar 

  • Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C (2002) Spatiotemporal patterning of reactive oxygen production and Ca 2 + wave propagation in Fucus rhizoid cells. Plant Cell 14:2369–2381

    CAS  PubMed Central  PubMed  Google Scholar 

  • dacz-Narloch B, Beyhl D, Larisch C, Lopez-Sanjurjo EJ, Reski R, Kuchitsu K, Muller TD, Becker D, Schonknecht G, & Hedrich R (2011). A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 23 2696–2707

    Google Scholar 

  • Darley CP, Skiera LA, Northrop F, Sanders D, Davies JM (1998) Tonoplast inorganic pyrophosphatase in Vicia faba guard cells. Planta 206:272–277

    CAS  Google Scholar 

  • De Silva DLR, Hetherington AM, Mansfield TA (1985) Synergism between calcium ions and abscisic acid in preventing stomatal opening. New Phytol 100:473–482

    Google Scholar 

  • Dodd AN, Love J, Webb AAR (2005) The plant clock shows its metal: circadian regulation of cytosolic free Ca2+. Trends Plant Sci 10:15–21

    CAS  PubMed  Google Scholar 

  • Dodd AN, Jakobsen MK, Baker AJ, Telzerow A, Hou SW, Laplaze L, Barrot L, Poethig RS, Haseloff J, Webb AAR (2006) Time of day modulates low-temperature Ca2+ signals in Arabidopsis. Plant J 48:962–973

    CAS  PubMed  Google Scholar 

  • Eisenach C, Papanatsiou M, Hillert EK, Blatt MR (2014) Clustering of the K+ channel GORK of Arabidopsis parallels its gating by extracellular K+. Plant J 78:203–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frohnmeyer H, Grabov A, Blatt MR (1998) A role for the vacuole in auxin-mediated control of cytosolic pH by Vicia mesophyll and guard cells. Plant J 13:109–116

    CAS  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Correa LGG, Ramirez-Aguilar SJ, Gomez-Porras JL, Gonzalez W, Thibaud JB, van Dongen JT, Dreyer I (2011) Potassium gradients serve as a mobile energy source in plant vascular tissues. PNAS 108:864–869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl—channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KAS, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106:21425–21430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geisler M, Axelsen KB, Harper JF, Palmgren MG (2000) Molecular aspects of higher plant P-type Ca2+ -ATPases. Biochim Et Biophys Acta-Biomembr 1465:52–78

    CAS  Google Scholar 

  • Gilroy S, Fricker MD, Read ND, Trewavas AJ (1991) Role of calcium in signal transduction of Commelina guard cells. Plant Cell 3:333–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104:10726–10731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grabov A, Blatt MR (1997) Parallel control of the inward-rectifier K+ channel by cytosolic-free Ca2+ and pH in Vicia guard cells. Planta 201:84–95

    CAS  Google Scholar 

  • Grabov A, Blatt MR (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci USA 95:4778–4783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grabov A, Blatt MR (1999) A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol 119:277–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gradmann D, Blatt MR, Thiel G (1993) Electrocoupling of ion transporters in plants. J Membr Biol 136:327–332

    CAS  PubMed  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton DWA, Hills A, Blatt MR (2001) Extracellular Ba 2 + and voltage interact to gate Ca2+ channels at the plasma membrane of stomatal guard cells. FEBS Lett 491:99–103

    CAS  PubMed  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    CAS  PubMed  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes. Sinauer Press, Sunderland, Mass

    Google Scholar 

  • Hills A, Chen ZH, Amtmann A, Blatt MR, Lew VL (2012) OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hou C, Tian W, Kleist T, He K, Garcia V, Bai F, Hao Y, Luan S, Li L (2014) DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res 24:632–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1983) Electric current flow in excitable cells. Clarendon Press, Oxford

    Google Scholar 

  • Kinoshita T, Nishimura M, Shimazaki KI (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+ ATPase in guard cells of fava bean. Plant Cell 7:1333–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS- dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23:215–220

    CAS  PubMed  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci Unit States Am 95:15837–15842

    CAS  Google Scholar 

  • Lemtirichlieh F, MacRobbie EAC (1994) Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid—a patch clamp study. J Membr Biol 137:99–107

    CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EAC, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci Unit States Am 100:10091–10095

    CAS  Google Scholar 

  • Lew VL, Bookchin RM (1986) Volume, pH, and ion-content regulation in human red-cells—analysis of transient-behavior with an integrated model. J Membr Biol 92:57–74

    CAS  PubMed  Google Scholar 

  • Lew VL, Ferreira HG, Moura T (1979) Behavior of transporting epithelial-cells.1. Computer-analysis of a basic model. Proc R Soc Lon Ser B-Biol 206:53–83

    CAS  Google Scholar 

  • Lohse G, Hedrich R (1992) Characterization of the plasma-membrane H+ -ATPase from Vicia faba guard cells. Planta 188:206–214

    CAS  PubMed  Google Scholar 

  • Lopez-Marques RL, Schiott M, Jakobsen MK, Palmgren MG (2004) Structure, function and regulation of primary H+ and Ca2+ pumps. In: Blatt MR (ed) Membrane transport in plants. Blackwell, Oxford, pp 72–104

    Google Scholar 

  • Loro G, Drago I, Pozzan T, Lo Schiavo F, Zottini M, Costa A (2012) Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. Plant J 71:1–13

    CAS  PubMed  Google Scholar 

  • MacRobbie EAC (1991) Effects of ABA on ion transport and stomatal regulation. J Exp Bot 42:11

    Google Scholar 

  • MacRobbie EAC (1995) Effects of ABA on 86 Rb+ fluxes at plasmalemma and tonoplast of stomatal guard cells. Plant J 7:835–843

    CAS  Google Scholar 

  • MacRobbie EAC (2000) ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+ (Rb+) release. Proc Natl Acad Sci Unit States Am 97:12361–12368

    CAS  Google Scholar 

  • MacRobbie EAC (2006) Osmotic effects on vacuolar ion release in guard cells. Proc Natl Acad Sci Unit States Am 103:1135–1140

    CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    CAS  PubMed  Google Scholar 

  • Mauritz JMA, Esposito A, Ginsburg H, Kaminski CF, Tiffert T, Lew VL (2009) The homeostasis of plasmodium falciparum—infected red blood cells. Plos Comput Biol 5:e1000339

    PubMed Central  PubMed  Google Scholar 

  • McAinsh MR, Webb AAR, Taylor JE, Hetherington AM (1995) Stimulus-induced oscillations in guard cell cytosolic-free calcium. Plant Cell 7:1207–1219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Ann Rev Phytopathol 46:101–122

    CAS  Google Scholar 

  • Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Mueller A, Giraudat M, Leung J (2007) Constitutive activation of a plasma membrane H+ -ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216–3226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang YZ, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+ -permeable channels and stomatal closure. Plos Biol 4:1749–1762

    CAS  Google Scholar 

  • Muir SR, Sanders D (1996) Pharmacology of Ca2+ release from red beet microsomes suggests the presence of ryanodine receptor homologs in higher-plants. FEBS Lett 395:39–42

    CAS  PubMed  Google Scholar 

  • Nakamura RL, McKendree WL, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    CAS  PubMed  Google Scholar 

  • Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey S, Zhang W, Assmann SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 581:2325–2336

    CAS  PubMed  Google Scholar 

  • Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    CAS  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pei ZM, Ward JM, Harper JF, Schroeder JI (1996) A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J 15:6564–6574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pei ZM, Ward JM, Schroeder JI (1999) Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles. Plant Physiol 121:977–986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux M, Hetherington AM, Sanders D (2005) The vacuolar Ca2+ -activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    CAS  PubMed  Google Scholar 

  • Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276:3215–3221

    CAS  PubMed  Google Scholar 

  • Pittman JK (2011) Vacuolar Ca2+ uptake. Cell Calcium 50:139–146

    CAS  PubMed  Google Scholar 

  • Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raschke K, Schnabl H (1978) Availability of chloride affects balance between potassium chloride and potassium malate in guard cells of Vicia faba L. Plant Physiol 62:84–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rienmuller F, Beyhl D, Lautner S, Fromm J, Al-Rasheid KAS, Ache P, Farmer EE, Marten I, Hedrich R (2010) Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels. Plant Cell Physiol 51:1548–1554

    PubMed  Google Scholar 

  • Roelfsema MR, Hedrich R (2010) Making sense out of Ca2+ signals: their role in regulating stomatal movements. Plant Cell Environ 33:305–321

    CAS  PubMed  Google Scholar 

  • Romano LA, Jacob T, Gilroy S, Assmann SM (2000) Increases in cytosolic Ca2+ are not required for abscisic acid-inhibition of inward K+ currents in guard cells of Vicia faba L. Planta 211:209–217

    CAS  PubMed  Google Scholar 

  • Sanders D (1990) Kinetic modeling of plant and fungal membrane transport systems. Ann Rev Plant Physiol Plant Mol Biol 41:77–108

    CAS  Google Scholar 

  • Schroeder JI (1988) K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J Gen Physiol 92:667–683

    CAS  PubMed  Google Scholar 

  • Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338:427–430

    Google Scholar 

  • Shabala S, Shabala L, Gradmann D, Chen ZH, Newman I, Mancuso S (2006) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J Exp Bot 57:171–184

    CAS  PubMed  Google Scholar 

  • Staxen I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci Unit States Am 96:1779–1784

    CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: Insights from expression in yeast. Ann Rev Plant Physiol Plant Mol Biol 51:433–462

    CAS  Google Scholar 

  • Thiel G, MacRobbie EAC, Blatt MR (1992) Membrane transport in stomatal guard cells: the importance of voltage control. J Membr Biol 126:1–18

    CAS  PubMed  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    CAS  PubMed  Google Scholar 

  • Wang Y, Papanatsiou M, Eisenach C, Karnik R, Williams M, Hills A, Lew VL, Blatt MR (2012) Systems dynamic modelling of a guard cell Cl—channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. Plant Physiol 160:1956–1972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Chen ZH, Zhang B, Hills A, Blatt MR (2013) PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells. Plant Physiol 163:566–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Hills A, Blatt MR (2014a) Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency. Plant Physiol 164:1593–1599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Noguchi K, Ono N, Inoue SI, Terashima I, Kinoshita T (2014b) Overexpression of plasma membrane H+ -ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. PNAS 111:533–538

    Google Scholar 

  • Ward JM, Maser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Ann Rev Physiol 71:59–82

    CAS  Google Scholar 

  • Webb AAR, McAinsh MR, Mansfield TA, Hetherington AM (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J 9:297–304

    CAS  Google Scholar 

  • Weiss TF (1996) Cellular biophysics. MIT Press, Cambridge

    Google Scholar 

  • Willmer C, Fricker MD (1996) Stomata .Chapman and Hall, London, pp 1–375

    Google Scholar 

  • Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH (1997) Abscisic acid signaling through cyclic ADP-Ribose in plants. Science 278:2126–2130

    CAS  PubMed  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei Z-M (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367

    Google Scholar 

Download references

Acknowledgments

This work was supported by BBSRC grants BB/L019205/1 and BB/M001601/1 to MRB, BB/L001276/1 to MRB and SR, BB/I001187/1 to HG and TL, and EU OPTIMA project 289642 PhD studentship to CM-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Blatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Minguet-Parramona, C. et al. (2015). Emergent Oscillatory Properties in Modelling Ion Transport of Guard Cells. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-20517-5_12

Download citation

Publish with us

Policies and ethics