Skip to main content

Athermal Photonic Circuits for Optical On-Chip Interconnects

  • Chapter
  • First Online:
  • 1362 Accesses

Abstract

Future high data rate communication at chip and board level of computational systems may be well suited for implementation by optical serial communication platforms, derived from the know-how developed for optical fiber communications that currently supports the backbone of internet infrastructure, namely dense wavelength division multiplexing (DWDM) filtering and switching technology. The integration of these optical functions on silicon integrated circuits is expected to leverage the power of ULSI electronics with the ultra-high bandwith available to optical communications, enabling extremely fast and efficient multicore and memory data exchange on vertically stacked integrated circuits (3D-IC). Unfortunately, thermal loads due to variable computational demand on a microprocessor chip may render on-chip optical communications unstable in a read-world, thermally challenging environment. In this chapter, we will discuss different approaches to minimize the effect of thermal variability on the performance of silicon photonics devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds (IUPAC recommendations 1994). Pure Appl. Chem. 66(9), 1893–1901 (1994)

    Article  Google Scholar 

  2. L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic Dirac Billiard in graphene quantum dots. Science 320(5874), 356–358 (2008)

    Article  Google Scholar 

  3. M.N. Leuenberger, D. Loss, Quantum computing in molecular magnets. Nature 410(6830), 789–793 (2001)

    Article  Google Scholar 

  4. J.D. Meindl, Beyond Moore’s law: the interconnect era. Comput. Sci. Eng. 5(1), 20–24 (2003)

    Article  Google Scholar 

  5. R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)

    Article  Google Scholar 

  6. T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, Myths and rumors of silicon photonics. Nat. Photon. 6(4), 206–208 (2012)

    Article  Google Scholar 

  7. D.A.B. Miller, Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88(6), 728–749 (2000)

    Article  Google Scholar 

  8. F.G. Della Corte, M. Bellucci, G. Cocorullo, M. Iodice, I. Rendina, Measurement and exploitation of the thermo-optic effect in silicon for light switching in optoelectronic integrated circuits, in Proceedings of SPIE 3953, Silicon-based Optoelectronics II, 2000, p. 127. doi: 10.1117/12.379604

    Google Scholar 

  9. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B.T. Lim, H.K. Bae, W.-G. Lee, Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt. Express 18(21), 22215–22221 (2010)

    Article  Google Scholar 

  10. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A.V. Krishnamoorthy, M. Asghari, Wavelength-tunable silicon microring modulator. Opt. Express 18(11), 10941–10946 (2010)

    Article  Google Scholar 

  11. X. Wang, S. Xiao, W. Zheng, F. Wang, Y. Hao, X. Jiang, M. Wang, J. Yang, Athermal silicon arrayed waveguide grating with polymer-filled slot structure, in 2008 5th IEEE International Conference on Group IV Photonics, September 2008, pp. 253–255

    Google Scholar 

  12. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, R. Baets, Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express 17(17), 14627–14633 (2009)

    Article  Google Scholar 

  13. M. Uenuma, T. Motooka, Temperature-independent silicon waveguide optical filter. Opt. Lett. 34(5), 599–601 (2009)

    Article  Google Scholar 

  14. B. Guha, A. Gondarenko, M. Lipson, Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers. Opt. Express 18(3), 1879–1887 (2010)

    Article  Google Scholar 

  15. B.J. Frey, D.B. Leviton, T.J. Madison, Temperature dependent refractive index of silicon and germanium (2006). arXiv:physics/0606168, pp. 62732J–62732J–10

    Google Scholar 

  16. D.B. Leviton, B.J. Frey, Temperature-dependent absolute refractive index measurements of synthetic fused silica (2008). arXiv:0805.0091 [physics]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Viegas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xing, P., Viegas, J. (2016). Athermal Photonic Circuits for Optical On-Chip Interconnects. In: Elfadel, I., Fettweis, G. (eds) 3D Stacked Chips. Springer, Cham. https://doi.org/10.1007/978-3-319-20481-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20481-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20480-2

  • Online ISBN: 978-3-319-20481-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics