Skip to main content

Overview of Vehicular Communications in Drive-thru Internet

  • Chapter
  • 386 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Drive-thru Internet can provide vehicles intermittent wireless connections to the Internet when driving through the coverage areas of RSUs, and accordingly enjoy the Internet services [1]. To well study the Drive-thru Internet communication framework and the related vehicular services applications on it, this chapter provides the overviews of the vehicular communications in Drive-thru Internet in terms of the characteristics of Drive-thru Internet, medium access control, and vehicular content distribution approaches. The remainder of this chapter is organized as follows. Section 2.1 studies the Drive-thru Internet characteristics and related research issues. Section 2.2 introduces the vehicular access control related literature in Drive-thru Internet. Section 2.3 surveys the vehicular content distribution related literature in Drive-thru Internet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The communication parameter settings for the measurement of IEEE 802.11a/b/g networks in Table 2.1 are 40 mW with 6 dBi, 100 mW with 2. 2 dBi, and 30 mW with 2. 2 dBi gain diversity patch antenna, respectively, in the open indoor office environment. Even though the measurement data is just for open indoor office environment, this is only available complete test data, and compared with the investigated 802.11b networks model in [1], there is few difference for the test data. In addition, this test data of IEEE 802.11g is based on the setting considerations of no legacy support and no 802.11b clients in cell.

References

  1. W.L. Tan, W.C. Lau, O. Yue, T.H. Hui, Analytical models and performance evaluation of drive-thru internet systems. IEEE J. Sel. Areas Commun. 29(1), 207–222 (2011)

    Article  Google Scholar 

  2. R. Seide, Capacity, coverage, and deployment considerations for ieee 802.11 g. Cisco Systems White Paper, San Jose, CA (2005)

    Google Scholar 

  3. Z. Zheng, P. Sinha, S. Kumar, Alpha coverage: bounding the interconnection gap for vehicular internet access, in Proceedings of IEEE INFOCOM (IEEE, 2009), Rio De Janeiro, Brazil, pp. 2831–2835

    Google Scholar 

  4. M.J. Khabbaz, H.M. Alazemi, C.M. Assi, Delay-aware data delivery in vehicular intermittently connected networks. IEEE Trans. Commun. 61(3), 1134–1143 (2013)

    Article  Google Scholar 

  5. S.F. Hasan, X. Ding, N.H. Siddique, S. Chakraborty, Measuring disruption in vehicular communications. IEEE Trans. Veh. Technol. 60(1), 148–159 (2011)

    Article  Google Scholar 

  6. Z. Zheng, Z. Lu, P. Sinha, S. Kumar, Maximizing the contact opportunity for vehicular internet access, in Proceedings of IEEE INFOCOM (IEEE, 2010), San Diego, CA, pp. 1–9

    Google Scholar 

  7. M. Heusse, F. Rousseau, G. Berger-Sabbatel, A. Duda, Performance anomaly of 802.11 b, in Proceedings of INFOCOM, vol. 2 (IEEE, 2003), San Francisco, pp. 836–843

    Google Scholar 

  8. D.B. Rawat, D.C. Popescu, G. Yan, S. Olariu, Enhancing vanet performance by joint adaptation of transmission power and contention window size. IEEE Trans. Parallel Distrib. Syst. 22(9), 1528–1535 (2011)

    Article  Google Scholar 

  9. D.-Y. Yang, T.-J. Lee, K. Jang, J.-B. Chang, S. Choi, Performance enhancement of multirate ieee 802.11 wlans with geographically scattered stations. IEEE Trans. Mob. Comput. 5(7), 906–919 (2006)

    Google Scholar 

  10. Y.-L. Kuo, K.-W. Lai, F.-S. Lin, Y.-F. Wen, E.-K. Wu, G.-H. Chen, Multirate throughput optimization with fairness constraints in wireless local area networks. IEEE Trans. Veh. Technol. 58(5), 2417–2425 (2009)

    Article  Google Scholar 

  11. P. Lin, W.-I. Chou, T. Lin, Achieving airtime fairness of delay-sensitive applications in multirate ieee 802.11 wireless lans. IEEE Commun. Mag. 49(9), 169–175 (2011)

    Google Scholar 

  12. H. Zhou, B. Liu, F. Hou, T.H. Luan, N. Zhang, L. Gui, Q. Yu, X. Shen, Spatial coordinated medium sharing: optimal access control management in drive-thru internet. IEEE Trans. Intell. Transp. Syst. 1–14 (2015)

    Google Scholar 

  13. J. Yoo, B.S.C. Choi, M. Gerla, An opportunistic relay protocol for vehicular road-side access with fading channels, in Proceedings of IEEE ICNP (IEEE, 2010), Kyoto, Japan, pp. 233–242

    Google Scholar 

  14. H. Zhou, B. Liu, T.H. Luan, F. Hou, L. Gui, Y. Li, Q. Yu, X. Shen, Chaincluster: engineering a cooperative content distribution framework for highway vehicular communications. IEEE Trans. Intell. Transp. Syst. 15(6), 2644–2657 (2014)

    Article  Google Scholar 

  15. N. Kumar, J.J. Rodrigues, N. Chilamkurti, Bayesian coalition game as a service for content distribution in internet of vehicles. IEEE Internet Things J. 1(6), 544–555 (2014)

    Article  Google Scholar 

  16. H. Liang, W. Zhuang, Cooperative data dissemination via roadside wlans. IEEE Commun. Mag. 50(4), 68–74 (2012)

    Article  Google Scholar 

  17. K. Ota, M. Dong, S. Chang, H. Zhu, Mmcd: cooperative downloading for highway vanets. IEEE Trans. Emerg. Top. Comput. 3(1), 34–43 (2015)

    Article  Google Scholar 

  18. M. Wang, Q. Shen, R. Zhang, H. Liang, S. Shen, Vehicle-density based adaptive mac for high throughput in drive-thru networks. IEEE Internet Things J. 1(6), 533–543 (2014)

    Article  Google Scholar 

  19. L. Xie, Q. Li, W. Mao, J. Wu, D. Chen, Association control for vehicular wifi access: pursuing efficiency and fairness. IEEE Trans. Parallel Distrib. Syst. 22(8), 1323–1331 (2011)

    Article  Google Scholar 

  20. Y.-S. Chen, M.-C. Chuang, C.-K. Chen, Deucescan: deuce-based fast handoff scheme in ieee 802.11 wireless networks. IEEE Trans. Veh. Technol. 57(2), 1126–1141 (2008)

    Google Scholar 

  21. K. Shafiee, A. Attar, V.C. Leung, Optimal distributed vertical handoff strategies in vehicular heterogeneous networks. IEEE J. Sel. Areas Commun. 29(3), 534–544 (2011)

    Article  Google Scholar 

  22. T.H. Luan, X. Ling, X. Shen, Mac in motion: impact of mobility on the mac of drive-thru internet. IEEE Trans. Mob. Comput. 11(2), 305–319 (2012)

    Article  Google Scholar 

  23. W. Alasmary, W. Zhuang, Mobility impact in ieee 802.11 p infrastructureless vehicular networks. Ad Hoc Netw. 10(2), 222–230 (2012)

    Google Scholar 

  24. K. Kim, J. Lee, W. Lee, A mac protocol using road traffic estimation for infrastructure-to-vehicle communications on highways. IEEE Trans. Intell. Transp. Syst. 14(3), 1500–1509 (2013)

    Article  Google Scholar 

  25. Y. Zhuang, J. Pan, V. Viswanathan, L. Cai, On the uplink Mac performance of a drive-thru internet. IEEE Trans. Veh. Technol. 61(4), 1925–1935 (2012)

    Article  Google Scholar 

  26. P. Bahl, R. Chandra, P.P. Lee, V. Misra, J. Padhye, D. Rubenstein, Y. Yu, Opportunistic use of client repeaters to improve performance of wlans. IEEE/ACM Trans. Netw. 17(4), 1160–1171 (2009)

    Article  Google Scholar 

  27. D. Hadaller, S. Keshav, T. Brecht, Mv-max: improving wireless infrastructure access for multi-vehicular communication, in Proceedings of the SIGCOMM Workshop on Challenged Networks (ACM, 2006), Pisa, Italy, pp. 269–276

    Google Scholar 

  28. P. Alexander, D. Haley, A. Grant, Cooperative intelligent transport systems: 5.9-ghz field trials. Proc. IEEE 99(7), 1213–1235 (2011)

    Google Scholar 

  29. O. Trullols-Cruces, M. Fiore, J. Barcelo-Ordinas, Cooperative download in vehicular environments. IEEE Trans. Mob. Comput. 11(4), 663–678 (2012)

    Article  Google Scholar 

  30. D. Zhang, C. Yeo, Enabling efficient wifi-based vehicular content distribution. IEEE Trans. Parallel Distrib. Syst. 24(3), 233–247 (2013)

    Google Scholar 

  31. W. Saad, Z. Han, A. Hjorungnes, D. Niyato, E. Hossain, Coalition formation games for distributed cooperation among roadside units in vehicular networks. IEEE J. Sel. Areas Commun. 29(1), 48–60 (2011)

    Article  Google Scholar 

  32. A. Nandan, S. Das, G. Pau, M. Gerla, M. Sanadidi, Cooperative downloading in vehicular ad-hoc wireless networks, in Proceedings of WONS (2005), pp. 32–41

    Google Scholar 

  33. M. Sardari, F. Hendessi, F. Fekri, Infocast: a new paradigm for collaborative content distribution from roadside units to vehicular networks, in Proceedings of IEEE SECON (2009), pp. 1–9

    Google Scholar 

  34. O. Trullols-Cruces, J. Morillo-Pozo, J.M. Barcelo, J. Garcia-Vidal, A cooperative vehicular network framework, in Proceedings of IEEE ICC (2009), pp. 1–6

    Google Scholar 

  35. Q. Yan, M. Li, Z. Yang, W. Lou, H. Zhai, Throughput analysis of cooperative mobile content distribution in vehicular network using symbol level network coding. IEEE J. Sel. Areas Commun. 30(2), 484–492 (2012)

    Article  Google Scholar 

  36. J. Zhao, T. Arnold, Y. Zhang, G. Cao, Extending drive-thru data access by vehicle-to-vehicle relay, in Proceedings of ACM VANET (2008), pp. 66–75

    Google Scholar 

  37. M. Li, Z. Yang, W. Lou, Codeon: cooperative popular content distribution for vehicular networks using symbol level network coding. IEEE J. Sel. Areas Commun. 29(1), 223–235 (2011)

    Article  Google Scholar 

  38. Q. Wang, P. Fan, K.B. Letaief, On the joint v2i and v2v scheduling for cooperative vanets with network coding. IEEE Trans. Veh. Technol. 61(1), 62–73 (2012)

    Article  Google Scholar 

  39. G. Brandner, U. Schilcher, T. Andre, C. Bettstetter, Packet delivery performance of simple cooperative relaying in real-world car-to-car communications. IEEE Wirel. Commun. Lett. 1(3), 237–240 (2012)

    Article  Google Scholar 

  40. T. Wang, L. Song, Z. Han, Coalitional graph games for popular content distribution in cognitive radio vanets. IEEE Trans. Veh. Technol. 60(99), 1–10 (2013)

    Google Scholar 

  41. J. Zhang, Q. Zhang, W. Jia, Vc-mac: a cooperative mac protocol in vehicular networks. IEEE Trans. Veh. Technol. 58(3), 1561–1571 (2009)

    Article  Google Scholar 

  42. S. Bharati, W. Zhuang, Cah-mac: cooperative adhoc mac for vehicular networks. IEEE J. Sel. Areas Commun. 31(9), 470–479 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zhou, H., Gui, L., Yu, Q., Shen, X.(. (2015). Overview of Vehicular Communications in Drive-thru Internet. In: Cooperative Vehicular Communications in the Drive-thru Internet. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20454-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20454-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20453-6

  • Online ISBN: 978-3-319-20454-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics