Advertisement

Overview of Vehicular Communications in Drive-thru Internet

  • Haibo Zhou
  • Lin Gui
  • Quan Yu
  • Xuemin (Sherman) Shen
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Drive-thru Internet can provide vehicles intermittent wireless connections to the Internet when driving through the coverage areas of RSUs, and accordingly enjoy the Internet services [1]. To well study the Drive-thru Internet communication framework and the related vehicular services applications on it, this chapter provides the overviews of the vehicular communications in Drive-thru Internet in terms of the characteristics of Drive-thru Internet, medium access control, and vehicular content distribution approaches. The remainder of this chapter is organized as follows. Section 2.1 studies the Drive-thru Internet characteristics and related research issues. Section 2.2 introduces the vehicular access control related literature in Drive-thru Internet. Section 2.3 surveys the vehicular content distribution related literature in Drive-thru Internet.

References

  1. 1.
    W.L. Tan, W.C. Lau, O. Yue, T.H. Hui, Analytical models and performance evaluation of drive-thru internet systems. IEEE J. Sel. Areas Commun. 29(1), 207–222 (2011)CrossRefGoogle Scholar
  2. 2.
    R. Seide, Capacity, coverage, and deployment considerations for ieee 802.11 g. Cisco Systems White Paper, San Jose, CA (2005)Google Scholar
  3. 3.
    Z. Zheng, P. Sinha, S. Kumar, Alpha coverage: bounding the interconnection gap for vehicular internet access, in Proceedings of IEEE INFOCOM (IEEE, 2009), Rio De Janeiro, Brazil, pp. 2831–2835Google Scholar
  4. 4.
    M.J. Khabbaz, H.M. Alazemi, C.M. Assi, Delay-aware data delivery in vehicular intermittently connected networks. IEEE Trans. Commun. 61(3), 1134–1143 (2013)CrossRefGoogle Scholar
  5. 5.
    S.F. Hasan, X. Ding, N.H. Siddique, S. Chakraborty, Measuring disruption in vehicular communications. IEEE Trans. Veh. Technol. 60(1), 148–159 (2011)CrossRefGoogle Scholar
  6. 6.
    Z. Zheng, Z. Lu, P. Sinha, S. Kumar, Maximizing the contact opportunity for vehicular internet access, in Proceedings of IEEE INFOCOM (IEEE, 2010), San Diego, CA, pp. 1–9Google Scholar
  7. 7.
    M. Heusse, F. Rousseau, G. Berger-Sabbatel, A. Duda, Performance anomaly of 802.11 b, in Proceedings of INFOCOM, vol. 2 (IEEE, 2003), San Francisco, pp. 836–843Google Scholar
  8. 8.
    D.B. Rawat, D.C. Popescu, G. Yan, S. Olariu, Enhancing vanet performance by joint adaptation of transmission power and contention window size. IEEE Trans. Parallel Distrib. Syst. 22(9), 1528–1535 (2011)CrossRefGoogle Scholar
  9. 9.
    D.-Y. Yang, T.-J. Lee, K. Jang, J.-B. Chang, S. Choi, Performance enhancement of multirate ieee 802.11 wlans with geographically scattered stations. IEEE Trans. Mob. Comput. 5(7), 906–919 (2006)Google Scholar
  10. 10.
    Y.-L. Kuo, K.-W. Lai, F.-S. Lin, Y.-F. Wen, E.-K. Wu, G.-H. Chen, Multirate throughput optimization with fairness constraints in wireless local area networks. IEEE Trans. Veh. Technol. 58(5), 2417–2425 (2009)CrossRefGoogle Scholar
  11. 11.
    P. Lin, W.-I. Chou, T. Lin, Achieving airtime fairness of delay-sensitive applications in multirate ieee 802.11 wireless lans. IEEE Commun. Mag. 49(9), 169–175 (2011)Google Scholar
  12. 12.
    H. Zhou, B. Liu, F. Hou, T.H. Luan, N. Zhang, L. Gui, Q. Yu, X. Shen, Spatial coordinated medium sharing: optimal access control management in drive-thru internet. IEEE Trans. Intell. Transp. Syst. 1–14 (2015)Google Scholar
  13. 13.
    J. Yoo, B.S.C. Choi, M. Gerla, An opportunistic relay protocol for vehicular road-side access with fading channels, in Proceedings of IEEE ICNP (IEEE, 2010), Kyoto, Japan, pp. 233–242Google Scholar
  14. 14.
    H. Zhou, B. Liu, T.H. Luan, F. Hou, L. Gui, Y. Li, Q. Yu, X. Shen, Chaincluster: engineering a cooperative content distribution framework for highway vehicular communications. IEEE Trans. Intell. Transp. Syst. 15(6), 2644–2657 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Kumar, J.J. Rodrigues, N. Chilamkurti, Bayesian coalition game as a service for content distribution in internet of vehicles. IEEE Internet Things J. 1(6), 544–555 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Liang, W. Zhuang, Cooperative data dissemination via roadside wlans. IEEE Commun. Mag. 50(4), 68–74 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Ota, M. Dong, S. Chang, H. Zhu, Mmcd: cooperative downloading for highway vanets. IEEE Trans. Emerg. Top. Comput. 3(1), 34–43 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Wang, Q. Shen, R. Zhang, H. Liang, S. Shen, Vehicle-density based adaptive mac for high throughput in drive-thru networks. IEEE Internet Things J. 1(6), 533–543 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Xie, Q. Li, W. Mao, J. Wu, D. Chen, Association control for vehicular wifi access: pursuing efficiency and fairness. IEEE Trans. Parallel Distrib. Syst. 22(8), 1323–1331 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.-S. Chen, M.-C. Chuang, C.-K. Chen, Deucescan: deuce-based fast handoff scheme in ieee 802.11 wireless networks. IEEE Trans. Veh. Technol. 57(2), 1126–1141 (2008)Google Scholar
  21. 21.
    K. Shafiee, A. Attar, V.C. Leung, Optimal distributed vertical handoff strategies in vehicular heterogeneous networks. IEEE J. Sel. Areas Commun. 29(3), 534–544 (2011)CrossRefGoogle Scholar
  22. 22.
    T.H. Luan, X. Ling, X. Shen, Mac in motion: impact of mobility on the mac of drive-thru internet. IEEE Trans. Mob. Comput. 11(2), 305–319 (2012)CrossRefGoogle Scholar
  23. 23.
    W. Alasmary, W. Zhuang, Mobility impact in ieee 802.11 p infrastructureless vehicular networks. Ad Hoc Netw. 10(2), 222–230 (2012)Google Scholar
  24. 24.
    K. Kim, J. Lee, W. Lee, A mac protocol using road traffic estimation for infrastructure-to-vehicle communications on highways. IEEE Trans. Intell. Transp. Syst. 14(3), 1500–1509 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Zhuang, J. Pan, V. Viswanathan, L. Cai, On the uplink Mac performance of a drive-thru internet. IEEE Trans. Veh. Technol. 61(4), 1925–1935 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Bahl, R. Chandra, P.P. Lee, V. Misra, J. Padhye, D. Rubenstein, Y. Yu, Opportunistic use of client repeaters to improve performance of wlans. IEEE/ACM Trans. Netw. 17(4), 1160–1171 (2009)CrossRefGoogle Scholar
  27. 27.
    D. Hadaller, S. Keshav, T. Brecht, Mv-max: improving wireless infrastructure access for multi-vehicular communication, in Proceedings of the SIGCOMM Workshop on Challenged Networks (ACM, 2006), Pisa, Italy, pp. 269–276Google Scholar
  28. 28.
    P. Alexander, D. Haley, A. Grant, Cooperative intelligent transport systems: 5.9-ghz field trials. Proc. IEEE 99(7), 1213–1235 (2011)Google Scholar
  29. 29.
    O. Trullols-Cruces, M. Fiore, J. Barcelo-Ordinas, Cooperative download in vehicular environments. IEEE Trans. Mob. Comput. 11(4), 663–678 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Zhang, C. Yeo, Enabling efficient wifi-based vehicular content distribution. IEEE Trans. Parallel Distrib. Syst. 24(3), 233–247 (2013)Google Scholar
  31. 31.
    W. Saad, Z. Han, A. Hjorungnes, D. Niyato, E. Hossain, Coalition formation games for distributed cooperation among roadside units in vehicular networks. IEEE J. Sel. Areas Commun. 29(1), 48–60 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Nandan, S. Das, G. Pau, M. Gerla, M. Sanadidi, Cooperative downloading in vehicular ad-hoc wireless networks, in Proceedings of WONS (2005), pp. 32–41Google Scholar
  33. 33.
    M. Sardari, F. Hendessi, F. Fekri, Infocast: a new paradigm for collaborative content distribution from roadside units to vehicular networks, in Proceedings of IEEE SECON (2009), pp. 1–9Google Scholar
  34. 34.
    O. Trullols-Cruces, J. Morillo-Pozo, J.M. Barcelo, J. Garcia-Vidal, A cooperative vehicular network framework, in Proceedings of IEEE ICC (2009), pp. 1–6Google Scholar
  35. 35.
    Q. Yan, M. Li, Z. Yang, W. Lou, H. Zhai, Throughput analysis of cooperative mobile content distribution in vehicular network using symbol level network coding. IEEE J. Sel. Areas Commun. 30(2), 484–492 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Zhao, T. Arnold, Y. Zhang, G. Cao, Extending drive-thru data access by vehicle-to-vehicle relay, in Proceedings of ACM VANET (2008), pp. 66–75Google Scholar
  37. 37.
    M. Li, Z. Yang, W. Lou, Codeon: cooperative popular content distribution for vehicular networks using symbol level network coding. IEEE J. Sel. Areas Commun. 29(1), 223–235 (2011)CrossRefGoogle Scholar
  38. 38.
    Q. Wang, P. Fan, K.B. Letaief, On the joint v2i and v2v scheduling for cooperative vanets with network coding. IEEE Trans. Veh. Technol. 61(1), 62–73 (2012)CrossRefGoogle Scholar
  39. 39.
    G. Brandner, U. Schilcher, T. Andre, C. Bettstetter, Packet delivery performance of simple cooperative relaying in real-world car-to-car communications. IEEE Wirel. Commun. Lett. 1(3), 237–240 (2012)CrossRefGoogle Scholar
  40. 40.
    T. Wang, L. Song, Z. Han, Coalitional graph games for popular content distribution in cognitive radio vanets. IEEE Trans. Veh. Technol. 60(99), 1–10 (2013)Google Scholar
  41. 41.
    J. Zhang, Q. Zhang, W. Jia, Vc-mac: a cooperative mac protocol in vehicular networks. IEEE Trans. Veh. Technol. 58(3), 1561–1571 (2009)CrossRefGoogle Scholar
  42. 42.
    S. Bharati, W. Zhuang, Cah-mac: cooperative adhoc mac for vehicular networks. IEEE J. Sel. Areas Commun. 31(9), 470–479 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Haibo Zhou
    • 1
  • Lin Gui
    • 2
  • Quan Yu
    • 2
  • Xuemin (Sherman) Shen
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations