Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 456 Accesses

Abstract

Vehicular networks play a critical role in both developing the intelligent transportation system and providing data services to vehicular users (VUs) by incorporating wireless communication and informatics technologies into the transportation system. However, due to the dramatic growth of mobile data traffic and the limited bandwidth of dedicated vehicular communication band, vehicular networks are facing spectrum scarcity problem in which spectrum resource is not sufficient to satisfy the data requirements, and thus the performance is compromised. In this chapter, we first overview the vehicular networks, and then describe the spectrum scarcity problem in vehicular networks, including the causes, and the impacts of the problem on the performance of vehicular networks. At last, the aim of the monograph is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karagiannis G, Altintas O, Ekici E, Heijenk G, Jarupan B, Lin K, Weil T (2011) Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun Surv Tutorials 99:1–33

    Google Scholar 

  2. Omar H, Zhuang W, Li L (2013) VeMAC: a TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Trans Mob Comput 12(9):1724–1736

    Article  Google Scholar 

  3. Luan T, Cai L, Chen J, Shen X, Bai F (2014) Engineering a distributed infrastructure for large-scale cost-effective content dissemination over urban vehicular networks. IEEE Trans Veh Technol 63(3):1419–1435

    Article  Google Scholar 

  4. Trullols-Cruces O, Fiore M, Barcelo-Ordinas J (2012) Cooperative download in vehicular environments. IEEE Trans Mob Comput 11(4):663–678

    Article  Google Scholar 

  5. Kenney J (2011) Dedicated short-range communications (DSRC) standards in the United States. Proc IEEE 99(7):1162–1182

    Article  Google Scholar 

  6. Moustafa H, Zhang Y (2009) Vehicular networks: techniques, standards, and applications. Auerbach Publications, Boston

    Book  Google Scholar 

  7. Bai F, Krishnamachari B (2010) Exploiting the wisdom of the crowd: localized, distributed information-centric VANETs. IEEE Commun Mag 48(5):138–146

    Article  Google Scholar 

  8. Lu R, Lin X, Luan T, Liang X, Shen X (2012) Pseudonym changing at social spots: an effective strategy for location privacy in VANETs. IEEE Trans Veh Technol 61(1):86–96

    Article  Google Scholar 

  9. KPMG’s global automotive executive survey (2012) [Online]. Available: http://www.kpmg.com/GE/en/IssuesAndInsights/ArticlesPublications/Documents/Global-automotive-executive-survey-2012.pdf

  10. Ramadan M, Al-Khedher M, Al-Kheder S (2012) Intelligent anti-theft and tracking system for automobiles. Int J Mach Learn Comput 2(1):88–92

    Google Scholar 

  11. Lin J, Chen S, Shih Y, Chen S (2009) A study on remote on-line diagnostic system for vehicles by integrating the technology of OBD, GPS, and 3G. World Acad Sci Eng Technol 56:56

    Google Scholar 

  12. Cheng X, Yang L, Shen X, D2D for intelligent transportation systems: a feasibility study. IEEE Trans Intell Transp Syst (to appear)

    Google Scholar 

  13. Zheng K, Liu F, Zheng Q, Xiang W, Wang W (2013) A graph-based cooperative scheduling scheme for vehicular networks. IEEE Trans Veh Technol 62(4):1450–1458

    Article  Google Scholar 

  14. Hartenstein H, Laberteaux K (2008) A tutorial survey on vehicular ad hoc networks. IEEE Commun Mag 46(6):164–171

    Article  Google Scholar 

  15. Chen B, Chan M (2009) Mobtorrent: a framework for mobile internet access from vehicles. In: Proceedings of IEEE INFOCOM, Rio de Janeiro, April 2009

    Google Scholar 

  16. Ghandour AJ, Fawaz K, Artail H (2011) Data delivery guarantees in congested vehicular ad hoc networks using cognitive networks. In: Proceedings of IEEE IWCMC, pp 871–876

    Google Scholar 

  17. Lu N, Luan T, Wang M, Shen X, Bai F (2012) Capacity and delay analysis for social-proximity urban vehicular networks. In: Proceedings of IEEE INFOCOM, Orlando, March 2012

    Google Scholar 

  18. The 1000x mobile data challenge (2013) [Online]. Available: http://www.qualcomm.com/media/documents/files/1000x-mobile-data-challenge.pdf

  19. Connected Car Industry Report (2014) [Online]. Available: http://blog.digital.telefonica.com/connected-car-report-2014/

  20. Asadi A, Wang Q, Mancuso V (2014) A survey on device-to-device communication in cellular networks. IEEE Commun Surv & Tutorials, 16(4):1801–1819

    Article  Google Scholar 

  21. Flores AB, Guerra RE, Knightly EW, Ecclesine P, Pandey S (2013) IEEE 802.11 af: a standard for TV white space spectrum sharing. IEEE Commun Mag 51(10):92–100

    Article  Google Scholar 

  22. Stevenson CR, Chouinard G, Lei Z, Hu W, Shellhammer SJ, Caldwell W (2009) IEEE 802.22: the first cognitive radio wireless regional area network standard. IEEE Commun Mag 47(1):130–138

    Article  Google Scholar 

  23. Bychkovsky V, Hull B, Miu A, Balakrishnan H, Madden S (2006) A measurement study of vehicular internet access using in situ Wi-Fi networks. In: Proceedings of ACM MobiCom, USA, September 2006

    Google Scholar 

  24. Doppler K, Rinne M, Wijting C, Ribeiro C, Hugl K (2009) Device-to-device communication as an underlay to lte-advanced networks. IEEE Commun Mag 47(12):42–49

    Article  Google Scholar 

  25. Golrezaei N, Molisch AF, Dimakis AG (2012) Base-station assisted Device-to-Device communications for high-throughput wireless video networks. In: Proceedings of IEEE ICC, Ottawa, June 2012

    Google Scholar 

  26. Johnson DB, Maltz DA (1996) Dynamic source routing in ad hoc wireless networks. In: Kluwer international series in engineering and computer science. Springer, New York, pp 153–179

    Google Scholar 

  27. Cheng N, Zhang N, Lu N, Shen X, Mark J, Liu F (2014) Opportunistic Spectrum Access for CR-VANETs: A Game-Theoretic Approach. IEEE Trans Veh Technol Technol 63(1):237–251

    Google Scholar 

  28. Lu R, Lin X, Luan T, Liang X, Shen X (2012) Pseudonym changing at social spots: An effective strategy for location privacy in VANETs. IEEE Trans Veh Technol 61(1):86–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Cheng, N., Shen, X.(. (2016). Introduction. In: Opportunistic Spectrum Utilization in Vehicular Communication Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20445-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20445-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20444-4

  • Online ISBN: 978-3-319-20445-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics