Skip to main content

Statins and PCSK9 Inhibitors: Defining the Correct Patients

  • Chapter
Combination Therapy In Dyslipidemia

Abstract

Plasma low-density lipoprotein cholesterol (LDL-C) level is a major risk factor for the development of atherosclerosis and cardiovascular disease (CVD). Lowering LDL-C reduces the risk of CVD events and all-cause mortality [1], and there is a direct relation between the degree of LDL-C lowering and the degree of CVD event reduction [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baigent C, Keech A, Kearney P, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.

    Article  CAS  PubMed  Google Scholar 

  2. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  CAS  PubMed  Google Scholar 

  3. Reiner Z, Catapano AL, De Backer G, et al. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2011;32:1769–818.

    Google Scholar 

  4. Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerosis cardiovascular risk in adults. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation. 2014;129(25 Suppl 2):S1–S45.

    Google Scholar 

  5. Boekholdt SM, Hovingh GK, Mora S, et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events. A meta-analysis of statin trials. J Am Coll Cardiol. 2014;64:485–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Stroes ES, Thompson PD, Corsini A, et al. Statin-associated muscle symptoms: impact on statin therapy – European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J. 2015;36:1012–22.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36.

    Article  CAS  PubMed  Google Scholar 

  8. Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53:2515–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Norata GD, Tibolla G, Catapano AL. PCSK9 inhibition for the treatment of hypercholesterolemia: promises and emerging challenges. Vascul Pharmacol. 2014;62:103–11.

    Article  CAS  PubMed  Google Scholar 

  10. Urban D, Pöss J, Böhm M, Laufs U. Targeting the proprotein convertase subtilisin/kexin type 9 (PCSK9) for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62:1401–8.

    Article  CAS  PubMed  Google Scholar 

  11. Farnier M. PCSK9: from discovery to therapeutic applications. Arch Cardiovasc Dis. 2014;107:58–66.

    Article  PubMed  Google Scholar 

  12. Marais AD, Kim JB, Wasserman SM, Lambert G. PCSK9 inhibition in LDL cholesterol reduction: genetics and therapeutic implications of very low plasma lipoprotein levels. Pharmacol Ther. 2015;145:58–66.

    Article  CAS  PubMed  Google Scholar 

  13. Cui C-J, Li S, Li J-J. PCSK9 and its modulation. Clin Chim Acta. 2015;440:79–86.

    Article  CAS  PubMed  Google Scholar 

  14. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11:367–83.

    Article  CAS  PubMed  Google Scholar 

  15. Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  CAS  PubMed  Google Scholar 

  16. Cohen J, Pertsemlidis A, Korowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen JC, Boerwinkle E, Mosley Jr TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  CAS  PubMed  Google Scholar 

  18. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55:2833–42.

    Article  CAS  PubMed  Google Scholar 

  19. Ference BA, Yoo W, Alesh I, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease. J Am Coll Cardiol. 2012;60:2631–9.

    Article  CAS  PubMed  Google Scholar 

  20. Surdo PL, Bottomley MJ, Calzetta A, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011;12:1300–5.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rashid S, Curtis DE, Garuti R, et al. Decreased plasma cholesterol and hypersentivity to statins in mice lacking PCSK9. Proc Natl Acad Sci U S A. 2005;102:5374–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Tavori H, Fan D, Blakemore JL, et al. Serum PCSK9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation. 2013;127:2403–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tavori H, Rashid S, Fazio S. On the function and homeostasis of PCSK9: reciprocal interaction with LDLR and additional lipid effects. Atherosclerosis. 2015;238:264–70.

    Article  CAS  PubMed  Google Scholar 

  24. Roubtsova A, Munkonda MN, Awan Z, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2011;31:785–91.

    Article  CAS  PubMed  Google Scholar 

  25. Le May C, Kourimate S, Langhi C, et al. Proprotein convertase subtilisin/kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90.

    Article  PubMed  Google Scholar 

  26. Levy E, Ouadda ABD, Spahis S, et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis. 2013;227:297–306.

    Article  CAS  PubMed  Google Scholar 

  27. Rashid S, Tavori H, Brown P, et al. PCSK9 promotes intestinal overproduction of triglyceride-rich apolipoprotein-b lipoprotein through both LDL-receptor dependent and independent mechanisms. Circulation. 2014;130:431–41.

    Article  CAS  PubMed  Google Scholar 

  28. Le May C, Berger JM, Lespine A, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol. 2013;33:1484–93.

    Article  PubMed  Google Scholar 

  29. Denis M, Marcinkiewicz J, Zaid A, et al. Gene inactivation of PCSK9 reduces atherosclerosis in mice. Circulation. 2012;125:894–901.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Mashhadi RH, Sorensen CB, Kragh PM, et al. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med. 2013;5:166ra1.

    Article  PubMed  Google Scholar 

  31. Kühnast S, van der Hoorn JWA, Pieterman EJ, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55:2103–12.

    Article  PubMed Central  PubMed  Google Scholar 

  32. www.clinicaltrials.gov. NCT 01813422. Accessed on March 2015.

  33. Dubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24:1454–9.

    Article  CAS  PubMed  Google Scholar 

  34. Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49:394–8.

    Article  CAS  PubMed  Google Scholar 

  35. Welder G, Zineh I, Pacanowski MA, Troutt JS, Cao G, Konrad RJ. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res. 2010;51:2717–21.

    Article  Google Scholar 

  36. Farnier M. The role of proprotein convertase subtilisin/kexin type 9 in hyperlipidemia. Focus on therapeutic implications. Am J Cardiovasc Drugs. 2011;11:145–52.

    Article  CAS  PubMed  Google Scholar 

  37. Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26:1094–100.

    Article  CAS  PubMed  Google Scholar 

  38. Hedrick JA. Targeting PCSK9 for the treatment of hypercholesterolemia. Curr Opin Investig Drugs. 2009;10:938–46.

    CAS  PubMed  Google Scholar 

  39. Rhainds D, Arsenault BJ, Tardif J-C. PCSK9 inhibition and LDL cholesterol lowering: the biology of an attractive therapeutic target and critical review of the latest clinical trials. Clin Lipidol. 2012;7:621–40.

    Article  CAS  Google Scholar 

  40. Seidah NG. PCSK9 as a therapeutic target of dyslipidemia. Expert Opin Ther Targets. 2009;13:19–28.

    Article  CAS  PubMed  Google Scholar 

  41. Hooper AJ, Burnett JR. Anti-PCSK9 therapies for the treatment of hypercholesterolemia. Expert Opin Biol Ther. 2013;13:429–35.

    Article  CAS  PubMed  Google Scholar 

  42. Farnier M. PCSK9 inhibitors. Curr Opin Lipidol. 2013;24:251–8.

    Article  CAS  PubMed  Google Scholar 

  43. Dadu RT, Ballantyne CM. Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol. 2014;11:563–75.

    Article  CAS  PubMed  Google Scholar 

  44. Frank-Kamenetsky M, Grefhorst A, Anderson NN, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105:11915–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ason B, Tep S, Davis Jr HR, et al. Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J Lipid Res. 2011;52:679–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of a RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomized, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383:60–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mayne J, Dewpura T, Raymond A, et al. Novel loss-of-function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin Chem. 2011;57:1415–23.

    Article  CAS  PubMed  Google Scholar 

  48. Chan JCY, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A. 2009;106:9820–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Galabova G, Brunner S, Winsauer G, et al. Peptide-based anti-PCSK9 vaccines-an approach for long-term LDL-C management. PLoS One. 2014;9, e114469.

    Article  PubMed Central  PubMed  Google Scholar 

  50. www.clinicaltrials.gov. NCT 01623115. Accessed on March 2015.

  51. www.clinicaltrials.gov. NCT 01709500. Accessed on March 2015.

  52. www.clinicaltrials.gov. NCT 01617655. Accessed on March 2015.

  53. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of Alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.

    Article  CAS  PubMed  Google Scholar 

  54. www.clinicaltrials.gov. NCT 01644175. Accessed on March 2015.

  55. Cannon CP, Cariou B, Blom D, et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–94.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Roth EM, Taskinen MR, Ginsberg HN, et al. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol. 2014;176:55–61.

    Article  PubMed  Google Scholar 

  57. www.clinicaltrials.gov. NCT 01709513. Accessed on March 2015.

  58. Bays H, Gaudet D, Weiss R, et al. Alirocumab as add-on to atorvastatin versus other lipid treatment strategies: ODYSSEY OPTIONS 1 randomized trial. J Clin Endocrinol Metab 2015; June 1: online. www.clinicaltrials.gov. NCT 01730040. Accessed on March 2015.

  59. www.clinicaltrials.gov. NCT 01730053. Accessed on March 2015.

  60. www.clinicaltrials.gov. NCT 01926782. Accessed on March 2015.

  61. www.clinicaltrials.gov. NCT 02023879. Accessed on March 2015.

  62. Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolemia (RUTHERFORD-2): a randomized, double-blind, placebo-controlled trial. Lancet. 2015;385:331–40.

    Article  CAS  PubMed  Google Scholar 

  63. Blom DJ, Hala T, Bolognese M, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19.

    Article  CAS  PubMed  Google Scholar 

  64. Koren MJ, Lundqvist P, Bolognese M, et al. Anti-PCSK9 monotherapy for hypercholesterolemia – the MENDEL-2 randomized, controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–40.

    Article  CAS  PubMed  Google Scholar 

  65. Stroes E, Colquhoun D, Sullivan D, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8.

    Article  CAS  PubMed  Google Scholar 

  66. Robinson JG, Nedergaard BS, Rogers WJ, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in Patients with hypercholesterolemia. JAMA. 2014;311:1870–82.

    Article  PubMed  Google Scholar 

  67. Raal FJ, Honarpour N, Blom DK, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B); a randomized, double-blind, placebo-controlled trial. Lancet. 2015;385:341–50.

    Article  CAS  PubMed  Google Scholar 

  68. www.clinicaltrials.gov. NCT 01588496. Accessed on March 2015.

  69. www.clinicaltrials.gov. NCT 01968980. Accessed on March 2015.

  70. www.clinicaltrials.gov. NCT 01968954. Accessed on March 2015.

  71. www.clinicaltrials.gov. NCT 01968967. Accessed on March 2015.

  72. www.clinicaltrials.gov. NCT 02100514. Accessed on March 2015.

  73. www.clinicaltrials.gov. NCT 02135029. Accessed on March 2015.

  74. Stein EA, Honarpour N, Wasserman SM, XU F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128:2113–20.

    Article  CAS  PubMed  Google Scholar 

  75. Raal FJ, Giugliano RP, Sabatine MS, et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J Am Coll Cardiol. 2014;63:1278–88.

    Article  CAS  PubMed  Google Scholar 

  76. Rader DJ, Kastelein JJ. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation. 2014;129:1022–32.

    Article  PubMed  Google Scholar 

  77. Stein EA, Gipe D, Bergeron J, et al. Effect of a monoclonal antibody to PCSK9, REG727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380:29–36.

    Article  CAS  PubMed  Google Scholar 

  78. Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367:1891–900.

    Article  CAS  PubMed  Google Scholar 

  79. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59:2344–53.

    Article  CAS  PubMed  Google Scholar 

  80. Koren MJ, Giugliano P, Raal FJ, et al. Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia. 52-week results from the open-label study of long term evaluation against LDL-C (OSLER) randomized trial. Circulation. 2014;129:234–43.

    Article  CAS  PubMed  Google Scholar 

  81. Schwartz GG, Bessac L, Berdan LG, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY Outcomes trial. Am Heart J. 2014;168:682–9. e1.

    Article  CAS  PubMed  Google Scholar 

  82. www.clinicaltrials.gov. NCT 01975376. Accessed on March 2015.

  83. www.clinicaltrials.gov. NCT 01975389. Accessed on March 2015.

  84. www.clinicaltrials.gov. NCT 01764633. Accessed on March 2015.

  85. Catapano AL, Papadopoulos N. The safety of therapeutic monoclonal antibodies: Implications for cardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis. 2013;228:18–28.

    Article  CAS  PubMed  Google Scholar 

  86. Mbikay M, Sirois F, Mayne J, et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 2010;584:701–6.

    Article  CAS  PubMed  Google Scholar 

  87. Labonte P, Begley S, Guevin C, et al. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology. 2009;50:17–24.

    Article  CAS  PubMed  Google Scholar 

  88. Raal FJ, Pilcher GJ, Panz VR, et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation. 2011;124:2202–7.

    Article  CAS  PubMed  Google Scholar 

  89. Cuchel M, Bruckert E, Ginsberg HN, et al. Homozygous familial hypercholesterolemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolemia of the European Atherosclerosis Society. Eur Heart J. 2014;35:2146–57.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholestrolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease. Eur Heart J. 2013;34:3478–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Pijlman AH, Huijgen R, Verhagen SN, et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis. 2010;209:189–94.

    Article  CAS  PubMed  Google Scholar 

  92. Mundal L, Sarancic M, Ose L, et al. Mortality among patients with familial hypercholesterolemia: a registry-based study in Norway, 1992–2010. J Am Heart Assoc. 2014;3:e001236.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Kataoka Y, St John J, Wolski K, et al. Atheroma progression in hyporesponders to statin therapy. Arterioscler Thromb Vasc Biol. 2015;35:990–5. Doi:10.1161.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interests

Michel Farnier has received research support from and participated in a speakers’ bureau for Amgen, Merck, Sanofi/Regeneron; received honoraria from Abbott, Eli Lilly, Pfizer; and acted as a consultant/advisory panel member for Amgen, AstraZeneca, Roche, Kowa, Merck, Recordati and Sanofi/Regeneron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Farnier MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farnier, M. (2015). Statins and PCSK9 Inhibitors: Defining the Correct Patients. In: Banach, M. (eds) Combination Therapy In Dyslipidemia. Adis, Cham. https://doi.org/10.1007/978-3-319-20433-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20433-8_9

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-20432-1

  • Online ISBN: 978-3-319-20433-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics