Population Games with Vector Payoff and Approachability

  • Dario BausoEmail author
  • Thomas W. L. Norman
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 682)


This paper studies population games with vector payoffs. It provides a new perspective on approachability based on mean-field game theory. The model involves a Hamilton-Jacobi-Bellman equation which describes the best-response of every player given the population distribution and an advection equation, capturing the macroscopic evolution of average payoffs if every player plays its best response.


Mixed Strategy Repeated Game Vector Payoff Coalitional Game Markovian Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of D. Bauso was supported by the 2012 “Research Fellow” Program of the Dipartimento di Matematica, Università di Trento and by PRIN 20103S5RN3 “Robust decision making in markets and organizations, 2013–2016”. This work has developed during the sabbatical period spent by D. Bauso as academic visitor at the Department of Engineering Science, University of Oxford, UK


  1. 1.
    Aumann, R.J.: Markets with a continuum of traders. Econometrica 32(1–2), 39–50 (1964)CrossRefGoogle Scholar
  2. 2.
    Bauso, D., Notarstefano, G.: Distributed n-player approachability and consensus in coalitional games. IEEE Trans. Autom. Control (2014), (in print). Available online at doi: 10.1109/TAC.2015.2411873
  3. 3.
    Bauso, D., Lehrer, E., Solan, E., Venel, X.: Attainability in repeated games with vector payoffs. INFORMS Math. Oper. Res. 6054 (2014) Online version
  4. 4.
    Blackwell, D.: An analog of the minimax theorem for vector payoffs. Pacific J. Math. 6(1), 1–8 (1956)CrossRefGoogle Scholar
  5. 5.
    Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning and Games. Cambridge University Press, Cambridge (2006)Google Scholar
  6. 6.
    Foster, D., Vohra, R.: Regret in the on-line decision problem. Games Econ. Behav. 29, 7–35 (1999)CrossRefGoogle Scholar
  7. 7.
    Hart, S.: Adaptive heuristics. Econometrica 73, 1401–1430 (2005)CrossRefGoogle Scholar
  8. 8.
    Hart, S., Mas-Colell, A.: A general class of adaptive strategies. J. Econ. Theory 98, 26–54 (2001)CrossRefGoogle Scholar
  9. 9.
    Hart, S., Mas-Colell, A.: Regret-based continuous-time dynamics. Games Econ. Behav. 45, 375–394 (2003)CrossRefGoogle Scholar
  10. 10.
    Huang, M.Y., Caines, P.E., Malhamé, R.P.: Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 98–103 (2003)Google Scholar
  11. 11.
    Huang, M.Y., Caines, P.E., Malhamé, R.P.: Large population stochastic dynamic games: closed loop kean-vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6, 221–252 (2006)Google Scholar
  12. 12.
    Huang, M.Y., Caines, P.E., Malhamé, R.P.: Large population cost-coupled lqg problems with non-uniform agents: individual-mass behaviour and decentralized ε-nash equilibria. IEEE Trans. Autom. Control 9, 1560–1571 (2007)CrossRefGoogle Scholar
  13. 13.
    Jovanovic, B., Rosenthal, R.W.: Anonymous sequential games. J. Math. Econ. 17, 77–87 (1988)CrossRefGoogle Scholar
  14. 14.
    Lasry, J.m., Lions, P.l.: Jeux à champ moyen. i - le cas stationnaire. C.R. Math. 343(9), 619–625 (2006)Google Scholar
  15. 15.
    Lasry, J.m., Lions, P.l.: Jeux à champ moyen. ii - horizon fini et controle optimal. C. R. Math. 343(10), 679–684 (2006)Google Scholar
  16. 16.
    Lasry, J.m., Lions, P.l.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)Google Scholar
  17. 17.
    Lehrer, E.: Allocation processes in cooperative games. Int. J. Game Theory 31, 341–351 (2002)CrossRefGoogle Scholar
  18. 18.
    Lehrer, E.: Approachability in infinite dimensional spaces. Int. J. Game Theory 31(2), 253–268 (2002)CrossRefGoogle Scholar
  19. 19.
    Lehrer, E.: A wide range no-regret theorem. Game Econ. Behav. 42, 101–115 (2003)CrossRefGoogle Scholar
  20. 20.
    Lehrer, E., Sorin, S.: Minmax via differential inclusion. Convex Anal. 14(2), 271–273 (2007)Google Scholar
  21. 21.
    Soulaimani, A.S., Quincampoix, M., Sorin, S.: Approachability theory, discriminating domain and differential games. SIAM J. Control. Optim. 48(4), 2461–2479 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.DICGIMUniversità di PalermoPalermoItaly
  2. 2.Magdalen CollegeOxfordUK

Personalised recommendations