Skip to main content

Arsenic and Chromium-Induced Oxidative Stress in Metal Accumulator and Non-accumulator Plants and Detoxification Mechanisms

  • Chapter
Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Abstract

Mitigation of arsenic (As) and chromium (Cr) pollution is a topical environmental issue of high R&D priority due to its toxicity on living organisms and deleterious effects on the environment. Following uptake by plants, As and Cr generate reactive oxygen species (ROS) and induce oxidative stress, which exerts negative effects on biochemical, molecular, and cellular levels that hinder plant growth and development. When the stressor level reaches the threshold level of plant tolerance, the stress response is manifested physiologically and beyond that level, the plant succumbs. However, some plants termed as hyperaccumulators, i.e., those accumulating metal ions inside their cellular milieu with BF > 1, have evolved detoxification mechanisms due to their physiological and genetic makeup which facilitates scavenging of indigenously generated ROS. Various enzymatic and non-enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), ascorbate, glutathione, and phenolic compounds have been reported to be involved in neutralising ROS. It seems that the antioxidant defence system plays a significant role in combating metal stress and confers metal tolerance to these plants. Understanding the biochemistry of plants exposed to As and Cr stress would be beneficial for selecting As and Cr tolerant plants that are better equipped with such defence mechanisms. This chapter reviews different aspects related to antioxidant defence mechanisms in As and Cr hyperaccumulator and non-hyperaccumulator plants. This chapter also highlights usefulness of these biomarkers for screening plants with competent biochemical mechanisms for metal stress tolerance. This information, in turn will help to design efficient phytoextraction treatment systems through deployment of such competent plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ (1990) Soil processes and the behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Chapman & Hall, London

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide‐scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to trace metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenriender C, Ruano A, Gunse B (1985) Leaf water potential in Cr(VI) treated bean plants (Phaseolus vulgaris L). Plant Physiol Suppl 177:163–164

    Google Scholar 

  • Barrachina AC, Carbonell FB, Beneyto JM (1995) Arsenic uptake, distribution, and accumulation in tomato plants-effect of arsenite on plant growth and yield. J Plant Nutr 18:1237–1250

    Article  Google Scholar 

  • Bartolomeo AD, Poletti L, Sanchini G, Sebastiani B, Morozzi G (2004) Relationship among parameters of lake polluted sediments evaluated by multivariate statistical analysis. Chemosphere 55:1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Benner S (2010) Hydrology: anthropogenic arsenic. Nat Geosci 3:5–6

    Article  CAS  Google Scholar 

  • Blanvillain R, Kim JH, Wu S, Lima A, Ow DW (2008) Oxidative stress 3 is a chromatin-associated factor involved in tolerance to heavy metals and oxidative stress. Plant J 57:654–665

    Article  PubMed  CAS  Google Scholar 

  • Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate tolerant Holcus lanatus. Plant J 45:917–929

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:174–194

    Article  CAS  Google Scholar 

  • Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytorem 4:87–100

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43:83–116

    Article  CAS  Google Scholar 

  • Brenner A, Lazarova Z (2012) Membrane processes. In: Mustafa E, Barrott L (eds) Best practice guide on metals removal from drinking water by treatment. IWA, London

    Google Scholar 

  • Buchet JP, Lison D (1998) Mortality by cancer in groups of the Belgian population with a moderately increased intake of arsenic. Int Arch Occup Environ Health 71:125–130

    Article  CAS  PubMed  Google Scholar 

  • Cao XD, Ma LQ, Tu C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Chen NC, Kanazawa S, Horiguchi T, Chen NC (2001) Effect of chromium on some enzyme activities in the wheat rhizosphere. Soil Microorgan 55:3–10

    Google Scholar 

  • Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Ahsan H (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the health effects of arsenic longitudinal study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239:184–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheremisinoff NP (1998) Groundwater remediation and treatment technologies. Noyes, Westwood, NJ

    Google Scholar 

  • Choong TS, Chuah TG, Robiah Y, Koay FG, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr) broth under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90

    Article  CAS  Google Scholar 

  • Conesa HM, Evangelou MW, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J 2012: 168–214

    Google Scholar 

  • Craciun AR, Courbot M, Bourgis F, Salis P, Saumitou-Laprade P, Verbruggen N (2006) Comparative cDNA–AFLP analysis of Cd tolerant and sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea. J Exp Bot 57:2967–2983

    Article  PubMed  Google Scholar 

  • Cunningham SD, David W (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Da Costa TC, De Brito KCT, Rocha JAV, Leal KA, Rodrigues MLK, Minella JPG, Matsumoto ST, Vargas VMF (2012) Runoff of genotoxic compounds in river basin sediment under the influence of contaminated soils. Ecotoxicol Environ Saf 75:63–72

    Article  PubMed  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 10:1268–1280

    Article  CAS  Google Scholar 

  • Das M, Maiti SK (2008) Comparison between availability of heavy metals in dry and wetland tailing of an abandoned copper-tailing pond. Environ Monit Assess 137:343–350

    Article  CAS  PubMed  Google Scholar 

  • De Vos CR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291

    Article  PubMed  CAS  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103:5413–5418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107

    Article  CAS  Google Scholar 

  • Dixon HB (1996) The biochemical action of arsonic acids especially as phosphate analogues. Adv Inorg Chem 44:191–227

    Article  Google Scholar 

  • Fan Y, Ovesen JL, Puga A (2012) Long-term exposure to hexavalent chromium inhibits expression of tumor suppressor genes in cultured cells and in mice. J Trace Elem Med Biol 26:188–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fayiga AO, Ma LQ, Cao X, Rathinasabapathi B (2004) Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ Pollut 132:289–296

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2001) Arsenic species in an arsenic hyperaccumulating fern Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Giacomino A, Malandrino M, Abollino O, Velayutham M, Chinnathangavel T, Mentasti E (2010) An approach for arsenic in a contaminated soil: speciation, fractionation, extraction and effluent decontamination. Environ Pollut 158:416–423

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glass DJ (1999) United States and international markets for phytoremediation, Needham, Mass.: D. Glass Associates Inc. hyperaccumulating plant. Sci Total Environ 300:167–177

    Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  • Gupta DK, Inouhe M, Rodríguez-Serrano M, Romero-Puertas MC, Sandalio LM (2013) Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90:1987–1996

    Article  CAS  PubMed  Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013) Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiol Biochem 71:307–314

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Han FX, Banin A, Su Y, Monts DL, Plodinee MJ, Kingery WL, Triplet GE (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg A (2001) Copper and- arsenic induced oxidative stress in Holcus lanatus L. cloned with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Gomathinayagam M, Riadh K, Inès J, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  CAS  Google Scholar 

  • Jin YH, Clark AB, Slebos RJ, Al-Refai H, Taylor JA, Kunkel TA, Resnick MA, Gordenin DA (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet 34:326–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kertulis GM, Ma LQ, MacDonald GE, Chen R, Winefordner JD, Cai Y (2005) Arsenic speciation and transport in Pteris vittata L. and the effects on phosphorus in the xylem sap. Environ Exp Bot 54:239–247

    Article  CAS  Google Scholar 

  • Kertulis-Tartar GM, Rathinasabapathi B, Ma LQ (2009) Characterization of glutathione reductase and catalase in the fronds of two Pteris ferns upon arsenic exposure. Plant Physiol Biochem 47:960–965

    Article  CAS  PubMed  Google Scholar 

  • Kim KW, Bang S, Zhu Y, Meharg AA, Bhattacharya P (2009) Arsenic geochemistry, transport mechanism in the soil–plant system, human and animal health issues. Environ Int 35:453–454

    Article  PubMed  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  CAS  Google Scholar 

  • Landajo A, Arana G, de Diego A, Etxebarria N, Zuloaga O, Amouroux D (2004) Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque Country) by open-focused microwave-assisted extraction and ICP-OES. Chemosphere 56:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Liu X, Zhang S, Shan X, Zhu YG (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301

    Article  CAS  PubMed  Google Scholar 

  • Lokeshwari H, Chandrappa GT (2006) Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Curr Sci 91:622–627

    CAS  Google Scholar 

  • Lovdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macek T, Francova K, Kochankova L, Lovecka P, Ryslava E, Rezek J, Mackova M (2011) Phytoremediation-biological cleaning of a polluted environment. Rev Environ Health 19:63–82

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meharg AA (2003) Variation in arsenic accumulation: hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Miller G, Vladimir S, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour Technol 100:2155–2161

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mohanty K, Jha M, Meikap BC, Biswas MN (2006) Biosorption of Cr (VI) from aqueous solutions by Eichhornia crassipes. Chem Eng J 117:71–77

    Article  CAS  Google Scholar 

  • Mueller MJ (2004) Archetype signals in plants: the phytoprostanes. Curr Opin Plant Biol 7:441–448

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Bhattacharya P, Savage K, Foster A, Bundschuh J (2008) Distribution of geogenic arsenic in hydrologic systems: controls and challenges. J Contam Hydrol 99:1–7

    Article  CAS  PubMed  Google Scholar 

  • Mwegoha JSW (2008) The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: opportunities and challenges. JSDA 10:140–156

    Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585

    Article  CAS  PubMed  Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner Eng 13:549–561

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogbonna DN, Kii BL, Youdeowei PO (2009) Some physico-chemical and heavy metal levels in soils of waste dumpsites in Port Harcourt municipality and environs. J Appl Sci Environ Manag 13:65–70

    Google Scholar 

  • Onken BM, Hossner LR (1995) Plant uptake and determination of arsenic species in soil solution under flooded conditions. J Environ Qual 24:373–381

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Palmer HJ, Paulson KE (1997) Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev 55:353–361

    Article  CAS  PubMed  Google Scholar 

  • Panda SK (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000) Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Pro Natl Acad Sci India B 70:75–80

    CAS  Google Scholar 

  • Parr PD, Taylor FG Jr (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202

    Article  CAS  Google Scholar 

  • Paspaliaris I, Papassiopi N, Xenidis A, Hung YT (2010) Soil remediation. In: Wang LK, Hung YT, Shammas NK (eds) Handbook of advanced industrial and hazardous wastes treatment. CRC, Boca Raton, FL

    Google Scholar 

  • Pichai NMR, Samjamjaras R, Thammanoon H (2001) The wonders of a grass, Vetiver and its multifold applications. Asian Infrastruct Res Rev 3:1–4

    Google Scholar 

  • Pokhrel LR, Dubey B (2013) Global scenarios of metal mining, environmental repercussions, public policies, and sustainability: a review. Crit Rev Environ Sci Technol 43:2352–2388

    Article  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40:537–548

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Chhonkar PK (2010) Phytoremediation of heavy metal contaminated soils. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Berlin

    Google Scholar 

  • Raymond AW, Felix EO (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Reinheckel T, Noack H, Lorenz S, Wiswedel I, Augustin W (1998) Comparison of protein oxidation and aldehyde formation during oxidative stress in isolated mitochondria. Free Radic Res 29:297–305

    Article  CAS  PubMed  Google Scholar 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Ross SM (1994) Toxic metals in soil and plant systems. Wiley, Chichester, UK

    Google Scholar 

  • Rout GR, Sanghamitra S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L). Chemosphere 40:855–859

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Viveros G, Ferrera-Cerrato R, Alarcon A (2011) Short-term effects of arsenate-induced toxicity on growth, chlorophyll and carotenoid contents, and total content of phenolic compounds of Azolla filiculoides. Water Air Soil Pollut 217:455–462

    Article  CAS  Google Scholar 

  • Sarangi BK, Kalve SK, Pandey RA, Chakrabarti T (2009) Transgenic plants for phytoremediation of arsenic and chromium to enhance tolerance and hyperaccumulation. Transgen Plant J 3:57–86

    Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Schmfger MEV (2001) Phytochelatins: complexation of metals and metalloids, studies on the phytochelatin synthase. Ph.D thesis, Munich University of Technology (TUM), Munich, Germany

    Google Scholar 

  • Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant response to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  CAS  PubMed  Google Scholar 

  • Sekmen A, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt‐tolerant Plantago maritima and salt‐sensitive Plantago media. Physiol Plant 131:399–411

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK (2003) Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. Ph.D thesis, Tamil Nadu Agricultural University, Coimbatore, India

    Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L) R Wilczek, cv CO 4) roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2008) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  CAS  Google Scholar 

  • Sharma I, Singh R, Tripathi BN (2007) Biochemistry of arsenic toxicity and tolerance in plants. Biochem Cell Arch 7:165–170

    CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Article  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh N, Raj A, Khare PB, Tripathi RD, Jamil S (2010) Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator. Bioresour Technol 101:8960–8968

    Google Scholar 

  • Singh SK, Juwarkar AA, Kumar S, Meshram S, Fan M (2007) Effect of amendment on phytoextraction of arsenic by Vetiveria zizanioides from soil. Int J Environ Sci Technol 4:339–344

    Google Scholar 

  • Skeffington RA, Shewry PR, Petersen PJ (1976) Chromium uptake and transport in barley seedlings Hordeum vulgare. Planta 132:209–214

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond B Biol Sci 355:1455–1464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Sujatha P, Gupta A, Gupta A (1996) Tannery effluent characteristics and its effects on agriculture. J Ecotoxicol Environ Monit 6:45–48

    Google Scholar 

  • Sun RL, Zhou QX, Sun FH, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476

    Article  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Planta 126:45–51

    Article  CAS  Google Scholar 

  • Terry N, Banuelos GS (2000) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL

    Google Scholar 

  • USEPA (1992) Test methods for evaluating solid waste, physical/chemical methods. USEPA, SW-846, 3rd edn. United States Environmental Protection Agency

    Google Scholar 

  • USEPA (2000) Introduction to phytoremediation. EPA/600/R-99/107. Washington, DC

    Google Scholar 

  • USEPA (2001) Remediation technology cost compendium-year 2000. EPA-542-R-01-009. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC. Available at http://www.epa.gov

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Van de Mortel JE, Schat H, Moerland PD, Loren V, van Themaat E, Van Der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MG (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J (2008) Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot 62:60–68

    Article  CAS  Google Scholar 

  • Wang X, Ma LQ, Rathinasabapathi B, Liu YG, Zeng GM (2010) Uptake and translocation of arsenite and arsenate by Pteris vittata L.: effects of silicon, boron and mercury. Environ Exp Bot 68:222–229

    Article  CAS  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd(2+)-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  CAS  PubMed  Google Scholar 

  • Wild H (1974) Arsenic tolerant plant species established on arsenical mine dumps in Rhodesia. Kirkia 9:265–278

    Google Scholar 

  • Witters N, Mendelsohn RO, Van Slycken S, Weyens N, Schreurs E, Meers E, Tack F, Carleer R, Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study in: energy production and carbon dioxide abatement. Biomass Bioenergy 39:454–469

    Article  CAS  Google Scholar 

  • Xia X, Chen X, Liu R, Liu H (2011) Heavy metals in urban soils with various types of land use in Beijing, China. J Hazard Mater 186:2043–2050

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Dhote M, Kumar P, Sharma J, Chakrabarti T, Juwarkar AA (2010) Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress. J Hazard Mater 180:609–615

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46:786–793

    Article  CAS  PubMed  Google Scholar 

  • Yannarelli GG, Fernandez-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300:167–177

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Jie L, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 6:535–559

    Article  CAS  Google Scholar 

  • Zhou Q (2001) The measurement of malondialdehyde in plants. In: Zhou Q (ed) Methods in plant physiology. China Agricultural Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijaya Ketan Sarangi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tiwari, S., Sarangi, B.K. (2015). Arsenic and Chromium-Induced Oxidative Stress in Metal Accumulator and Non-accumulator Plants and Detoxification Mechanisms. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_7

Download citation

Publish with us

Policies and ethics