• Vladimir Kulikovskiy
Part of the Springer Theses book series (Springer Theses)


Neutrinos are the lightest known massive particles and they can interact only by weak interaction. These properties allow them to act as a unique transmitter of information. They can pass through the interstellar matter, escape from the dense cores of astrophysical sources and travel without any deflections even through strong magnetic fields. Neutrinos provide information complementary to photons and astronomers aim to use these probes to look deeper in space, look behind the sources or inside them. In this chapter, high energy neutrino astrophysics is introduced. Motivating ideas and evidences of neutrino sources are described in Sect. 1.1. Neutrino detection is described in Sect. 1.2 starting from neutrino interaction with matter and focusing on the optical method of neutrino detection in which the products of interaction are detected by Cerenkov light emitted in the medium. Finally, atmospheric muons and neutrinos are introduced which present the main component of the background noise.


Dark Matter Neutrino Oscillation Neutrino Interaction Neutrino Flux Neutrino Telescope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. M.G. Aartsen et al., Evidence for high-energy extraterrestrial neutrinos at the icecube detector. Science 3421242856 (2013a). ISSN 0036–8075,
  2. M.G. Aartsen et al., First observation of PeV-energy neutrinos with icecube. Phys. Lett. B 111(2) (2013b). 021103, ISSN 0031–9007,
  3. R. Abbasi et al., Time-integrated searches for point-like sources of neutrinos with the 40-string IceCube detector. ApJ 732(1), 18 (2011). ISSN 0004–637X,
  4. J. Abraham et al., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys. Lett. B 685(4–5), 239–246 (2010). ISSN 03702693,
  5. P. Abreu et al., A search for point sources of EeV neutrons. ApJ 760(2), 148 (2012). ISSN 0004–637X,
  6. M. Ackermann et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339(6121), 807–811 (2013). ISSN 1095–9203,
  7. M. Ageron et al., ANTARES: the first undersea neutrino telescope. NIM A 656(1), 11–38 (2011). ISSN 01689002,
  8. J. Aguilar et al., AMADEUS—the acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope. NIM A, 626–627 (2011). 128–143, ISSN 01689002,
  9. Q. Ahmad et al., Measurement of the rate of \(\nu \)e \(+\) d \(+\) p \(+\) p \(+\) e—interactions produced by B8 solar neutrinos at the sudbury neutrino observatory. Phys. Lett. B 87(7) (2001). 071301, ISSN 0031–9007,
  10. J. Ahrens et al., IceCube Preliminary Design Document, Technical report (2001)
  11. S. Aiello et al., KM3NeT Technical Design Report, Technical report KM3NeT (2011)
  12. P. Allison et al., Design and initial performance of the Askaryan Radio Array prototype EeV neutrino detector at the South Pole. Astropart. Phys. 35(7), 457–477 (2012). ISSN 09276505,
  13. R. Aloisio et al., Signatures of the transition from galactic to extragalactic cosmic rays. Phys. Rev. D 77(2) (2008). 025007, ISSN 1550–7998,
  14. J. Alvarez-Muñiz et al., Coherent Cherenkov radio pulses from hadronic showers up to EeV energies. Astropart. Phys. 35(6), 287–299 (2012). ISSN 09276505,
  15. J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, 1989). ISBN 9780521379755Google Scholar
  16. D. Bailey, Monte Carlo tools and analysis methods for understanding the ANTARES experiment and predicting its sensitivity to Dark Matter, Ph.D. thesis (Wolfson College, Oxford, 2002)
  17. I.A. Belolaptikov et al., The Baikal underwater neutrino telescope: design, performance, and first results. Astropart. Phys. 7(97), 263–282 (1997).
  18. J. Beringer et al., Review of particle physics. Phys. Rev. D 86(1) (2012). 010001, ISSN 1550–7998,
  19. S. Bilenky, B. Pontecorvo, Lepton mixing and neutrino oscillations. Phys. Rep. 41(4), 225–261 (1978). ISSN 03701573,
  20. B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector. ApJ 496(1982), 505–526 (1998).
  21. F. Descamps, Acoustic detection of high energy neutrinos in ice: status and results from the South Pole Acoustic Test Setup, arXiv preprint 0908.3251 (2009),
  22. J.A. Formaggio, G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales. Rev. Mod. Phys. 84(3), 1307–1341 (2012). ISSN 0034–6861,
  23. P. Gorham et al., Observations of the Askaryan effect in ice. Phys. Lett. B 99(17) (2007). 171101, ISSN 0031–9007,
  24. P.W. Gorham et al., Observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment. Phys. Rev. D 82(2) (2010). 022004, ISSN 1550–7998,
  25. P.W. Gorham et al., Erratum: observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment [Phys. Rev. D 82 022004 (2010)]. Phys. Rev. D 85(4), 1 (2012). 049901, ISSN 1550–7998,
  26. J.C. Hanson, The Performance and Initial Results of the ARIANNA Prototype, Ph.D. thesis (University of California, Irvine, 2013)
  27. C.W. James et al., LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique. Phys. Rev. D 81(4) (2010). 042003, ISSN 1550–7998,
  28. A. Karle, Neutrino astronomy a review of future experiments. Nucl. Phys. B P. Sup. 235–236 (2013). 364–370, ISSN 09205632,
  29. S. Klimushin et al., Precise parametrizations of muon energy losses in water, arXiv preprint hep-ph/0106010 (2001), 1–4,
  30. M. Kowalski et al., Improved cosmological constraints from new, old, and combined supernova data sets. ApJ 686(2), 749–778 (2008). ISSN 0004–637X,
  31. I. Kravchenko et al., RICE limits on the diffuse ultrahigh energy neutrino flux. Phys. Rev. D 73(8) (2006). 082002, ISSN 1550–7998,
  32. V. Marin, Charge excess signature in the CODALEMA data. Interpretation with SELFAS2. in Proceedings of the 32nd ICRC, vol. 1, (Beijing, 2011), pp. 291–294,
  33. M. Markevitch et al., Direct constraints on the dark matter self-interaction cross section from the Merging Galaxy Cluster 1E 065756. ApJ 606, 819–824 (2004).
  34. P. Mészáros, Gamma-ray bursts. Rep. Prog. Phys. 69(8), 2259–2321 (2006), ISSN 0034–4885,
  35. F. Reines, C. Cowan, The Reines-Cowan experiments: detecting the poltergeist. Los Alamos Science (25), 4–6 (1997).
  36. C. Spiering, IceCube and KM3NeT: lessons and relations. NIM A, 626–627, S48–S52 (2011), ISSN 01689002,
  37. M. Su et al., Giant gamma-ray bubbles from fermi -lat: active galactic nucleus activity or bipolar galactic wind? ApJ 724, 1044–1082 (2010). ISSN 0004–637X,
  38. W. Tucker et al., A search for “failed clusters” of galaxies. ApJ 444, 532–547 (1995).
  39. F. Vissani, F. Aharonian, Galactic sources of high-energy neutrinos: highlights. NIM A 692, 5–12 (2012). ISSN 01689002,

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Physics DepartmentUniversità degli Studi di GenovaGenoaItaly

Personalised recommendations