Skip to main content

Self-consistent Mean-Field Calculations

  • Chapter
  • First Online:
  • 298 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The HFB approach using the SLy4 functional (Chabanat et al., Nucl. Phys. A 635:231–256, 1998), [Cha98] and a volume contact pairing interaction Eq. (3.25) was first applied to describe the ground-state masses and charge radii of the neutron-rich \(A \approx 100\) nuclei in the isotopic chains between krypton and zirconium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We note again that the equilibrium configurations might be differently affected in the calculation by the pairing interaction also partially due to the finite basis size.

  2. 2.

    The different impact can also be partially due to the finite basis size, see similar comment for Fig. 4.1.

References

  1. M. Albers et al., Evidence for a smooth onset of deformation in the neutron-rich Kr isotopes. Phys. Rev. Lett. 108, 062701 (2012)

    Article  ADS  Google Scholar 

  2. A. Andreyev et al., A triplet of differently shaped spin-zero states in the atomic nucleus \(^{186}\)Pb. Nature 405, 430 (2000)

    Article  ADS  Google Scholar 

  3. G. Audi et al., The NUBASE2012 evaluation of nuclear properties. Chin. Phys. C 36, 1157 (2012)

    Article  Google Scholar 

  4. A.E. Barzakh et al., Changes in the mean-square charge radii and magnetic moments of neutron-deficient Tl isotopes. Phys. Rev. C 88, 024315 (2013)

    Article  ADS  Google Scholar 

  5. M. Bender, K. Rutz, P.-G. Reinhard, J. Maruhn, Pairing gaps from nuclear mean-field models. Eur. Phys. J. A 8, 59–75 (2000)

    Article  ADS  Google Scholar 

  6. M. Bender, P.-H. Heenen, P.-G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003)

    Article  ADS  Google Scholar 

  7. M. Bender, G.F. Bertsch, P.-H. Heenen, Global study of quadrupole correlation effects. Phys. Rev. C 73, 034322 (2006)

    Article  ADS  Google Scholar 

  8. M. Bender, G.F. Bertsch, P.-H. Heenen, Collectivity-induced quenching of signatures for shell closures. Phys. Rev. C 78, 054312 (2008)

    Article  ADS  Google Scholar 

  9. F. Blanc et al., Nuclear moments and deformation change in \(^{184}A{u}^{\mathit{g},\mathit{m}}\) from laser spectroscopy. Phys. Rev. Lett. 79, 2213–2216 (1997)

    Article  ADS  Google Scholar 

  10. C. Böhm et al., Evolution of nuclear ground-state properties of neutron-deficient isotopes around \(z=82\) from precision mass measurements. Phys. Rev. C 90, 044307 (2014)

    Article  ADS  Google Scholar 

  11. J. Bonn, G. Huber, H.-J. Kluge, L. Kugler, E.W. Otten, Sudden change in the nuclear charge distribution of very light mercury isotopes. Phys. Lett. B 38, 308–311 (1972)

    Article  ADS  Google Scholar 

  12. J. Bonn, G. Huber, H.-J. Kluge, E. Otten, Spins, moments and charge radii in the isotopic series \(^{181}\)Hg-\(^{191}\)Hg. Z. Phys. A 276, 203–217 (1976)

    Article  ADS  Google Scholar 

  13. N. Bree et al., Shape coexistence in the neutron-deficient even-even \(^{182-188}\)Hg isotopes studied via Coulomb excitation. Phys. Rev. Lett. 112, 162701 (2014)

    Article  ADS  Google Scholar 

  14. F. Buchinger et al., Systematics of nuclear ground state properties in \(^{78-100}\)Sr by laser spectroscopy. Phys. Rev. C 41, 2883–2897 (1990)

    Article  ADS  Google Scholar 

  15. P. Campbell et al., Laser spectroscopy of cooled zirconium fission fragments. Phys. Rev. Lett. 89, 082501 (2002)

    Article  ADS  Google Scholar 

  16. P. Campbell, J. Billowes, I.S. Grant, The isotope shift of \(^{90,91}\)Zr by collinear ion-laser beam spectroscopy. J. Phys. B 30, 4783 (1997)

    Article  ADS  Google Scholar 

  17. R. Casten, Nuclear Structure from a Simple Perspective (Oxford Science Publications, Oxford, 2005)

    Google Scholar 

  18. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities part II. Nuclei far from stabilities. Nucl. Phys. A 635, 231–256 (1998)

    Article  ADS  Google Scholar 

  19. B. Cheal et al., The shape transition in the neutron-rich yttrium isotopes and isomers. Phys. Lett. B 645, 133–137 (2007)

    Article  ADS  Google Scholar 

  20. J.P. Delaroche et al., Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  21. J. Dobaczewski et al., Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.: (VI) HFODD (v2.40h): a new version of the program. Comput. Phys. Commun. 180, 2361–2391 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Duguet, P. Bonche, P.-H. Heenen, J. Meyer, Pairing correlations. I. Description of odd nuclei in mean-field theories. Phys. Rev. C 65, 014310 (2001)

    Article  ADS  Google Scholar 

  23. P. Federman, S. Pittel, Unified shell-model description of nuclear deformation. Phys. Rev. C 20, 820–829 (1979)

    Article  ADS  Google Scholar 

  24. P. Federman, S. Pittel, A. Etchegoyen, Quenching of the \(2p_{1/2}\)-\(2p_{3/2}\) proton spin-orbit splitting in the Sr-Zr region. Phys. Lett. B 140, 269–271 (1984)

    Article  ADS  Google Scholar 

  25. G. Fricke, K. Heilig, in Nuclear Charge Radii, vol. 20, chap. 79-Au Gold, ed. by H. Schopper (Springer, Berlin, 2004), pp. 1–4

    Google Scholar 

  26. G. Fricke, K. Heilig, in Nuclear Charge Radii, vol. 20, chap. 80-Hg Mercury, ed. by H. Schopper (Springer, Berlin, 2004), pp. 1–9

    Google Scholar 

  27. J. Garcia-Ramos, K. Heyde, R. Fossion, V. Hellemans, S. De Baerdemacker, A theoretical description of energy spectra and two-neutron separation energies for neutron-rich zirconium isotopes. Eur. Phys. J. A 26, 221–225 (2005)

    Article  ADS  Google Scholar 

  28. S. Goriely, N. Chamel, J.M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 88, 024308 (2013)

    Article  ADS  Google Scholar 

  29. K. Heyde et al., A shell-model description of 0\(^{+}\) intruder states in even-even nuclei. Nucl. Phys. A 466, 189–226 (1987)

    Article  ADS  Google Scholar 

  30. M. Keim et al., Laser-spectroscopy measurements of \(^{72-96}\)Kr spins, moments and charge radii. Nucl. Phys. A 586, 219–239 (1995)

    Article  ADS  Google Scholar 

  31. T. Kühl et al., Nuclear shape staggering in very neutron-deficient Hg isotopes detected by laser spectroscopy. Phys. Rev. Lett. 39, 180–183 (1977)

    Article  ADS  Google Scholar 

  32. P. Lievens et al., Nuclear ground state properties of \(^{99}\)Sr by collinear laser spectroscopy with non-optical detection. Phys. Lett. B 256, 141–145 (1991)

    Article  ADS  Google Scholar 

  33. V. Manea et al., Collective degrees of freedom of neutron-rich \(a \approx 100\) nuclei and the first mass measurement of the short-lived nuclide \(^{100}\)Rb. Phys. Rev. C 88, 054322 (2013)

    Article  ADS  Google Scholar 

  34. N. Mãrginean et al., Evolution of deformation in the neutron-rich krypton isotopes: the \(^{96}\)Kr nucleus. Phys. Rev. C 80, 021301 (2009)

    Article  ADS  Google Scholar 

  35. S. Naimi et al., Critical-point boundary for the nuclear quantum phase transition Near \(A=100\) from mass measurements of \(^{96,97}\)Kr. Phys. Rev. Lett. 105, 032502 (2010)

    Article  ADS  Google Scholar 

  36. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 2000)

    Google Scholar 

  37. L.M. Robledo, G.F. Bertsch, Global systematics of octupole excitations in even-even nuclei. Phys. Rev. C 84, 054302 (2011)

    Article  ADS  Google Scholar 

  38. R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, Signatures of shape transitions in odd-\(A\) neutron-rich rubidium isotopes. Phys. Rev. C 82, 061302 (2010)

    Article  ADS  Google Scholar 

  39. R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, S. Perez-Martin, Charge radii and structural evolution in Sr, Zr, and Mo isotopes. Phys. Lett. B 691, 202–207 (2010)

    Article  ADS  Google Scholar 

  40. K. Rutz, M. Bender, P.-G. Reinhard, J. Maruhn, Pairing gap and polarisation effects. Phys. Lett. B 468, 1–6 (1999)

    Article  ADS  Google Scholar 

  41. G. Savard et al., Laser spectroscopy of laser-desorbed gold isotopes. Nucl. Phys. A 512, 241–252 (1990)

    Article  ADS  Google Scholar 

  42. N. Schunck et al., One-quasiparticle states in the nuclear energy density functional theory. Phys. Rev. C 81, 024316 (2010)

    Article  ADS  Google Scholar 

  43. O. Sorlin, M.-G. Porquet, Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61, 602 (2008)

    Article  ADS  Google Scholar 

  44. H.L. Thayer et al., Collinear laser spectroscopy of radioisotopes of zirconium. J. Phys. G 29, 2247 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  45. C. Thibault et al., Hyperfine structure and isotope shift of the \({D}_{2}\) line of \(^{76-98}\)Rb and some of their isomers. Phys. Rev. C 23, 2720–2729 (1981)

    Google Scholar 

  46. G. Ulm et al., Isotope shift of \(^{182}\)Hg and an update of nuclear moments and charge radii in the isotope range \(^{181}\)Hg-\(^{206}\)Hg. Z. Phys. A 325, 247–259 (1986)

    ADS  Google Scholar 

  47. K. Wallmeroth et al., Sudden change in the nuclear charge distribution of very light gold isotopes. Phys. Rev. Lett. 58, 1516–1519 (1987)

    Article  ADS  Google Scholar 

  48. K. Wallmeroth et al., Nuclear shape transition in light gold isotopes. Nucl. Phys. A 493, 224–252 (1989)

    Article  ADS  Google Scholar 

  49. M. Wang et al., The AME2012 atomic mass evaluation (II). Tables, graphs, and references. Chin. Phys. C 36, 1603 (2012)

    Article  ADS  Google Scholar 

  50. K. Washiyama et al., New parametrization of Skyrme’s interaction for regularized multireference energy density functional calculations. Phys. Rev. C 86, 054309 (2012)

    Article  ADS  Google Scholar 

  51. H. De Witte et al., Nuclear charge radii of neutron-deficient lead isotopes beyond \(N=104\) Midshell investigated by in-source laser spectroscopy. Phys. Rev. Lett. 98, 112502 (2007)

    Google Scholar 

  52. R.N. Wolf et al., Plumbing neutron stars to new depths with the binding energy of the exotic nuclide \(^{82}\)Zn. Phys. Rev. Lett. 110, 041101 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Manea .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manea, V. (2015). Self-consistent Mean-Field Calculations. In: Binding Energy of Strongly Deformed Radionuclides. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20409-3_4

Download citation

Publish with us

Policies and ethics