Skip to main content

Landslide Databases—State of Research and the Case of Germany

  • Chapter
  • First Online:
Landslide Databases as Tools for Integrated Assessment of Landslide Risk

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Landslide databases are valuable sources of information for research on landslides, not only in terms of their causes, types, and processes (e.g., Pelletier et al. 1997; Guzzetti et al. 2009; Rossi et al. 2010; Tonini et al. 2013; Hurst et al. 2013), but also the impacts and risks associated with them (e.g., Guzzetti et al. 2003; Hilker et al. 2009; Van Den Eeckhaut et al. 2010; Klose et al. 2014a). A landslide database, often also referred to as landslide inventory, is a systematic collection of information on past landslides (Hervás 2013). Besides some few event-based inventories, for example, those for earthquakes (e.g., Gorum et al. 2011) or rainfall events (e.g., Tsai et al. 2010), most landslide databases today are of historical nature, recording landslides at local to global scale over time (e.g., Malamud et al. 2004; Galli et al. 2008; Guzzetti et al. 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, E. (1959). Der Abtragungsmechanismus bei Massenverlagerungen an der Wellenkalkschichtstufe. Zeitschrift für Geomorphologie NF, 3, 193–226 und 283–304.

    Google Scholar 

  • Barnikel, F., & Becht, M. (2004). Möglichkeiten einer Bewertung des regionalen Gefährdungspotentials auf der Basis historischer Naturgefahrenforschungen. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 135, 1–10.

    Google Scholar 

  • Battistini, A., Segoni, S., Manzo, G., Catani, F., & Casagli, N. (2013). Web data mining for automatic inventory of geohazards at national scale. Applied Geography, 43, 147–158.

    Article  Google Scholar 

  • Baum, I., & Schmidt, K.-H. (2001). Temporal classification of mass movements on the Wellenkalk-scarp in Thuringia and northern Hesse – Possibilities and limitations. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 125, 25–41.

    Google Scholar 

  • Baum, R. L., Highland, L. M., Lyttle, P. T., Fee, J. M., Martinez, E. M., & Wald, L. A. (2014). “Report a landslide” a website to engage the public in identifying geologic hazards. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment, Vol. 1: The International Programme on Iandslides (IPL) (pp. 95–100). Berlin: Springer.

    Google Scholar 

  • Bibus, E., & Terhorst, B. (2001). Mass movements in Southwest Germany. Analyses and Results from the Tübingen Work Group of the MABIS Project. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 125, 93–103.

    Google Scholar 

  • Bock, B., Wehinger, A., & Krauter, E. (2012). Hanginstabilitäten in Rheinland-Pfalz: Ergebnisse der Rutschungsdatenbank Rheinland-Pfalz. Mainzer Geowissenschaftliche Mitteilungen, 40, 147–178.

    Google Scholar 

  • Catani, F., Casagli, N., Ermini, L., Righini, G., & Menduni, G. (2005). Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides, 2, 329–342.

    Article  Google Scholar 

  • CRED. (2014). EM-DAT: The OFDA/CRED International Disaster Database – www.emdat.be – Université catholique de Louvain – Brussels – Belgium. Retrieved July 10, 2014, from http://www.emdat.be/.

  • Creighton, R. (2006). The Irish landslides database. In R. Creighton (Ed.), Landslides in Ireland (pp. 9–22). Dublin: Geological Survey of Ireland, Irish Landslides Working Group.

    Google Scholar 

  • Damm, B. (2005). Gravitative Massenbewegungen in Mittelgebirgsräumen – Geowissenschaftlich-historische Analyse von Massenbewegungsprozessen in Nordhessen und Südniedersachsen als Beitrag zur Angewandten Geomorphologie (262 S. + Anhang, unveröffentlicht). Habilitationsschrift, Universität Eichstätt-Ingolstadt.

    Google Scholar 

  • Damm, B., & Klose, M. (2014). Landslide database for the Federal Republic of Germany: A tool for analysis of mass movement processes and impacts. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment, Vol. 2: Methods of Iandslide Studies (pp. 787–792). Berlin: Springer.

    Google Scholar 

  • Damm, B., & Klose, M. (2015). The landslide database for Germany: Closing the gap at national level. Geomorphology. doi:10.1016/j.geomorph.2015.03.021.

  • Damm, B., Becht, M., Varga, K., & Heckmann, T. (2010). Relevance of tectonic and structural parameters in Triassic bedrock formations to landslide susceptibility in Quaternary hillslope sediments. Quaternary International, 222, 143–153.

    Article  Google Scholar 

  • Devoli, G., Strauch, W., Chavez, G., & Høeg, K. (2007). A landslide database for Nicaragua: A tool for landslide-hazard management. Landslides, 4, 163–176.

    Article  Google Scholar 

  • Dikau, R., & Schmidt, K.-H. (2001). Mass movements in South, West and Central Germany – Objectives and main results of the MABIS project. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 125, 1–12.

    Google Scholar 

  • Dikau, R., Cavallin, A., & Jäger, S. (1996). Databases and GIS for landslide research in Europe. Geomorphology, 15, 227–239.

    Article  Google Scholar 

  • Foster, C., Pennington, C. V. L., Culshaw, M. G., & Lawrie, K. (2012). The national landslide database of Great Britain: Development, evolution and applications. Environmental Earth Sciences, 66, 941–953.

    Article  Google Scholar 

  • Galli, M., & Guzzetti, F. (2007). Landslide Vulnerability criteria: A case study from Umbria, central Italy. Environmental Management, 40, 649–664.

    Article  Google Scholar 

  • Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008). Comparing landslide inventory maps. Geomorphology, 94, 268–289.

    Google Scholar 

  • Gans, P., Heinritz, G., Hemmer, I., Hemmer, M., Miener, K., Nienaber, B., et al. (2014). DGfG-Studie zum Image der Geographie – Anlage und erste Ergebnisse. Rundbrief Geographie, 246, 4–8.

    Google Scholar 

  • Glade, T., & Crozier, M. (1996). Towards a national landslide information base for New Zealand. New Zealand Geographer, 52(1), 29–40.

    Article  Google Scholar 

  • Glade, T., Kadereit, A., & Dikau, R. (2001). Landslides at the Tertiary escarpments in Rheinhessen, Southwest Germany. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 125, 65–92.

    Google Scholar 

  • Gorum, T., Fan, X., van Westen, C. J., Huang, R. Q., Xu, Q., Tang, C., & Wang, G. (2011). Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 133, 152–167.

    Article  Google Scholar 

  • Grunert, J., & Hardenbicker, U. (1991). Hangrutschungen im Bonner Raum – Ihre Genese und Kartierung für Planungszwecke. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 89, 35–48.

    Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., Ardizzone, F., & Galli, M. (2003). The impact of landslides in the Umbria region, central Italy. Natural Hazards and Earth System Sciences, 3, 469–486.

    Article  Google Scholar 

  • Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279, 222–229.

    Article  Google Scholar 

  • Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42–66.

    Google Scholar 

  • Hardenbicker, U., & Grunert, J. (2001). Temporal occurrence of mass movements in the Bonn area. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 125, 13–24.

    Google Scholar 

  • Hervás, J. (2013). Landslide inventory. In P. T. Bobrowsky (Ed.), Encyclopedia of Natural Hazards (pp. 610–611). Berlin: Springer.

    Google Scholar 

  • Hervás, J., & Bobrowsky, P. (2009). Mapping: Inventories, susceptibility, hazard and risk. In K. Sassa, & P. Canuti (Eds.), Landslides – Disaster Risk Reduction (pp. 321–349). Berlin: Springer.

    Google Scholar 

  • Hilker, N., Badoux, A., & Hegg, C. (2009). The Swiss flood and landslide damage database 1972–2007. Natural Hazards and Earth System Sciences, 9, 913–925.

    Article  Google Scholar 

  • Hurst, M. D., Ellis, M. A., Royse, K. R., Lee, K. A., & Freeborough, K. (2013). Controls on the magnitude-frequency scaling of an inventory of secular landslides. Earth Surface Dynamics, 1, 67–78.

    Article  Google Scholar 

  • Jäger, D., Sandmeier, C., & Terhorst, B. (2012). Landslides and slope stability on the Franconian Alb, northern Bavaria. In Extended Abstracts Interpraevent (pp. 186–187). Grenoble, France.

    Google Scholar 

  • Jaedicke, C., Lied, K., & Kronholm, K. (2009). Integrated database for rapid mass movements in Norway. Natural Hazards and Earth System Sciences, 9, 469–479.

    Article  Google Scholar 

  • Jelínek, R., Maitan, S., & Omura, H. (2001). Slope movements in Slovakia – Geographic and geological characteristics. Journal of the Faculty of Agriculture, Kyushu University, 45(2), 589–600.

    Google Scholar 

  • Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., & Lerner-Lam, A. (2010). A global landslide catalog for hazard applications: Method, results, and limitations. Natural Hazards, 52, 561–575.

    Article  Google Scholar 

  • Klose, M., Damm, B., & Terhorst, B. (2014a). Landslide cost modeling for transportation infrastructures: A methodological approach. Landslides. doi:10.1007/s10346-014-0481-1.

  • Klose, M., Gruber, D., Damm, B., & Gerold, G. (2014b). Landslide susceptibility modeling on regional scales: The case of Lower Saxony, NW Germany. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment, Vol. 2: Methods of Iandslide Studies (pp. 437–442). Berlin: Springer.

    Google Scholar 

  • Klose, M., Gruber, D., Damm, B., & Gerold, G. (2014c). Spatial databases and GIS as tools for regional landslide susceptibility modeling. Zeitschrift für Geomorphologie NF, 58(1), 1–36.

    Article  Google Scholar 

  • Klose, M., Highland, L., Damm, B., & Terhorst, B. (2014d). Estimation of direct landslide costs in industrialized countries: Challenges, concepts, and case study. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment, Vol. 2: Methods of Iandslide Studies (pp. 661–667). Berlin: Springer.

    Google Scholar 

  • Komac, M., Fajfar, D., Ravnik, D., & Ribičič, M. (2007). Slovenian national landslide database – A promising approach to slope mass movement prevention plan. Geologija, 50, 393–402.

    Google Scholar 

  • Kött, A., Grubert, A., & Aderhold, G. (2012). Die Hessische Rutschungs-Datenbank – Ein neues Instrument zur Erfassung, Archivierung und Auswertung von Massenbewegungen. In Hessisches Landesamt für Umwelt und Geologie (Hrsg.), Jahresbericht 2012 (S. 89–102). Wiesbaden: Hessisches Landesamt für Umwelt und Geologie.

    Google Scholar 

  • Krauter, E., Kumerics, C., Feuerbach, J., & Lauterbach, M. (2012). Abschätzung der Risiken von Hang- und Böschungsrutschungen durch die Zunahme von Extremwetterereignissen (61 S). Berichte der Bundesanstalt für Straßenwesen, Heft S75. Bremerhaven: Wirtschaftsverlag NW.

    Google Scholar 

  • Liu, C., Li, W., Wu, H., Lu, P., Sang, K., Sun, W., et al. (2013). Susceptibility evaluation and mapping of China’s landslides based on multi-source data. Natural Hazards. doi:10.1007/s11069-013-0759-y.

  • LKN-SH. (2014). Fachpläne Küstenschutz, Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein. Retrieved June 25, 2014, from http://www.schleswigholstein.de/KuestenSchutz/DE/kuestenSchutz_node.html.

  • Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29, 687–711.

    Article  Google Scholar 

  • Mrozek, T., Kułak, M., Grabowski, D., & Wójcik, A. (2014). Landslide counteracting system (SOPO): Inventory database of landslides in Poland. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment, Vol. 2: Methods of Iandslide Studies (pp. 815–820). Berlin: Springer.

    Google Scholar 

  • Munich Re. (2014). NatCatSERVICE. Retrieved July 15, 2014, from http://www.munichre.com/en/reinsurance/business/non-life/natcatservice/index.html.

  • Obst, K., & Schütze, K. (2010). The landslide database of Mecklenburg-Vorpommern and geohazard assessment at the Baltic Sea coast in NE Germany. In Conference Proceedings Deuqua 2010 (pp. 58–59). Greifswald, Germany.

    Google Scholar 

  • Osuchowski, M. (2008). The Australian landslide database. AusGeo News, 92, 17–19.

    Google Scholar 

  • Pelletier, J. D., Malamud, B. D., Blodget, T., & Turcotte, D. L. (1997). Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides. Engineering Geology, 48, 255–268.

    Article  Google Scholar 

  • Petley, D. N. (2012). Global patterns of loss of life from landslides. Geology, 40, 927–930.

    Article  Google Scholar 

  • Petley, D. N., Dunning, S. A., & Rosser, N. J. (2005). The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. In O. Hungr, R. Fell, R. Couture, & E. Eberhardt (Eds.), Landslide risk management (pp. 367–373). London: A.A. Balkema Publishers, Taylor & Francis Group.

    Google Scholar 

  • Rossi, M., Witt, A., Guzzetti, F., Malamud, B. D., & Peruccacci, S. (2010). Analysis of historical landslide time series in the Emilia-Romagna region, northern Italy. Earth Surface Processes and Landforms, 35(10), 1123–1137.

    Google Scholar 

  • Schmidt, K.-H., & Beyer, I. (2001). Factors controlling mass movement susceptibility on the Wellenkalk-scarp in Hesse and Thuringia. Zeitschrift für Geomorphologie NF, Suppl.-Bd. 125, 43–63.

    Google Scholar 

  • Schmidt, K.-H., & Beyer, I. (2003). High magnitude landslide-events on a limestone-scarp in central Germany – Morphometric characteristics and climatic controls. Geomorphology, 49, 323–342.

    Google Scholar 

  • Schönwiese, C.-D. (2013). Klimatologie. Stuttgart: Ulmer. 489 S.

    Google Scholar 

  • Schunke, E. (1971). Die Massenverlagerungen an den Schichtstufen und Schichtkämmen des Weser-Leine-Berglandes. Nachrichten der Akademie der Wissenschaften in Göttingen, II. Mathematisch-Physikalische Klasse, 3, 1–35.

    Google Scholar 

  • Schweigl, J., & Hervás, J. (2009). Landslide mapping in Austria (61 pp). EC JRC-IES Report EUR 23785 EN. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Spizzichino, D., Margottini, C., Trigila, A., Iadanza, C., & Linser, S. (2010). Chapter 9: Landslides. In European Environment Agency (Ed.), Mapping the impacts of natural hazards and technological accidents in Europe: An overview of the last decade (pp. 81–93). EEA Technical report 13/2010. Copenhagen: European Environmental Agency.

    Google Scholar 

  • Terhorst, B., & Kreja, R. (2009). Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides, 6, 309–319.

    Article  Google Scholar 

  • Tonini, M., Pedrazzini, A., Penna, I., & Jaboyedoff, M. (2013). Spatial pattern of landslides in the Swiss Rhone Valley. Natural Hazards. doi:10.1007/s11069-012-0522-9.

    Google Scholar 

  • Trigila, A., & Iadanza, C. (2008). Landslides in Italy (32 pp. + Appendix). Special Report 2008. Rome: Institute for Environmental Protection and Research.

    Google Scholar 

  • Tsai, F., Hwang, J.-H., Chen, L.-C., & Lin, T.-H. (2010). Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Natural Hazards and Earth System Sciences, 10, 2179–2190.

    Article  Google Scholar 

  • USGS. (2014). Landslide events. U.S. Geological Survey. Retrieved June 23, 2014, from http://landslides.usgs.gov/recent/.

  • Van Den Eeckhaut, M., & Hervás, J. (2012a). State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology, 139–140, 545–558.

    Google Scholar 

  • Van Den Eeckhaut, M., & Hervás, J. (2012b). Landslide inventories in Europe and policy recommendations for their interoperability and harmonization – A JRC contribution to the EU-FP7 SafeLand project (202 pp). JRC Report EU 25666 EN. Luxembourg: Publications Office of the European Union.    

    Google Scholar 

  • Van Den Eeckhaut, M., Poesen, J., Vandekerckhove, L., Van Gils, M., & Van Rompaey, A. (2010). Human-environment interactions in residential areas susceptible to landsliding: The Flemish Ardennes case study. Area, 42(3), 339–358.

    Google Scholar 

  • Varga, K., Becht, M., & Damm, B. (2006). Ansätze der GIS-gestützten räumlichen Modellierung von Rutschgefahren in Buntsandsteingebieten Nordhessens und Südniedersachsens (BRD). Angewandte Geoinformatik, 2006, 679–684.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Klose .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klose, M. (2015). Landslide Databases—State of Research and the Case of Germany. In: Landslide Databases as Tools for Integrated Assessment of Landslide Risk. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-20403-1_2

Download citation

Publish with us

Policies and ethics