Skip to main content

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 45))

Abstract

Lignan structures show diverse oxidation levels and substitution patterns, and O-methylation is often crucial in determining the final product distribution. In the secondary metabolic processes of plants, O-methylation is usually catalyzed by S-adenosyl-L-methionine-dependent O-methyltransferases (OMTs). Recently, we have isolated six cDNAs encoding lignan OMTs: Carthamus tinctorius matairesinol OMT (CtMROMT), Sesamum indicum OMT1 (SiOMT1), Sesamum radiatum OMT1 (SrOMT1), Anthriscus sylvestris matairesinol OMT (AsMROMT), A. sylvestris thujaplicatin OMT (AsTJOMT), and Forsythia koreana matairesinol OMT (FkMROMT). CtMROMT and AsMROMT formed a small clade with plant OMTs including caffeic acid O-methyltransferase from Rosa chinensis var. spontanea (RcOMT3) and reticuline 7-O-methyltransferase from Papaver somniferum (PsOMT1). In contrast, AsTJOMT, FkMROMT, SiOMT1, and SrOMT2 were found in a distinct clade together with caffeic acid OMTs (5-hydroxyconiferaldehyde OMTs). The phylogenetic relationship suggested that the lignin OMTs arose independently in various lignan-producing plants via acquisition of substrate specificity for lineage-specific lignan structures. Biochemical characterization of their recombinant proteins indicated that they are highly regioselective and selective in terms of substrate enantiomers; CtMROMT and AsMROMT methylated matairesinol to give 4′-O-methylmatairesinol (arctigenin), while FkMROMT methylated matairesinol to give 4-O-methylmatairesinol (isolarctigenin). These reactions were also found to be highly selective in terms of substrate enantiomers. In addition, AsTJOMT catalyzed the selective methylation of thujaplicatin to give 5-O-methylthujaplicatin. SiOMT1 and SrOMT2 catalyzed O-methylation for furofuran lignans. These findings on lignan OMTs provide useful information for further identification of cDNAs encoding other biologically active lignan OMTs, as well as clues to understand diversity and plasticity of plant secondary metabolism beyond lignan biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss GP (2000) Nomenclature of lignans and neolignans. Pure Appl Chem 72:1493–1523

    Article  CAS  Google Scholar 

  2. Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article  CAS  Google Scholar 

  3. Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem Rev 9:1–17

    Article  CAS  Google Scholar 

  4. Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53:273–284

    Article  CAS  Google Scholar 

  5. Umezawa T, Yamamura M, Nakatsubo T, Suzuki S, Hattori T (2011) Stereoselectivity of the biosynthesis of norlignans and related compounds. In: Gang D (ed) The biological activity of phytochemicals (recent advances in phytochemistry, 41). Springer, New York, pp 179–197

    Chapter  Google Scholar 

  6. Umezawa T (2003) Phylogenetic distribution of lignan producing plants. Wood Res 90:27–110

    CAS  Google Scholar 

  7. Harmatha J, Dinan L (2003) Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions. Phytochem Rev 2:321–330

    Article  CAS  Google Scholar 

  8. MacRae WD, Towers GHN (1984) Biological activities of lignans. Phytochemistry 23:1207–1220

    Article  CAS  Google Scholar 

  9. You Y (2005) Podophyllotoxin derivatives: current synthetic approaches for new anticancer agents. Curr Pharm Des 11:1695–1717

    Article  CAS  PubMed  Google Scholar 

  10. Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SPS (2005) Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorg Med Chem 13:5892–5908

    Article  CAS  PubMed  Google Scholar 

  11. Awale S, Lu J, Kalauni SK, Kurashima Y, Tezuka Y, Kadota S, Esumi H (2006) Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res 66:1751–1757

    Article  CAS  PubMed  Google Scholar 

  12. Kim J-Y, Hwang J-H, Cha M-R, Yoon M-Y, Son E-S, Tomida A, Ko B, Song S-W, Shin-ya K, Hwang Y-I et al (2010) Arctigenin blocks the unfolded protein response and shows therapeutic antitumor activity. J Cell Physiol 224:33–40

    CAS  PubMed  Google Scholar 

  13. Sun S, Wang X, Wang C, Nawaz A, Wei W, Li J, Wang L, Yu DH (2011) Arctigenin suppresses unfolded protein response and sensitizes glucose deprivation-mediated cytotoxicity of cancer cells. Planta Med 77:141–145

    Article  CAS  PubMed  Google Scholar 

  14. Ryu SY, Ahn JW, Kang YH, Han BH (1995) Antiproliferative effect of arctigenin and arctiin. Arch Pharm Res 18:462–463

    Article  CAS  Google Scholar 

  15. Matsumoto T, Hosono-Nishiyama K, Yamada H (2006) Antiproliferative and apoptotic effects of butyrolactone lignans from Arctium lappa on leukemic cells. Planta Med 72:276–278

    Article  CAS  PubMed  Google Scholar 

  16. Kim SH, Jang YP, Sung SH, Kim CJ, Kim JW, Kim YC (2003) Hepatoprotective dibenzylbutyrolactone lignans of Torreya nucifera against CCl4-induced toxicity in primary cultured rat hepatocytes. Biol Pharm Bull 26:1202–1205

    Article  CAS  PubMed  Google Scholar 

  17. Fan C-Q, Zhu X-Z, Zhan Z-J, Ji X-Q, Li H, Yue J-M (2006) Lignans from Saussurea conica and their NO production suppressing activity. Planta Med 72:590–595

    Article  CAS  PubMed  Google Scholar 

  18. Kang HS, Lee JY, Kim CJ (2008) Anti-inflammatory activity of arctigenin from Forsythiae fructus. J Ethnopharmacol 116:305–312

    Article  CAS  PubMed  Google Scholar 

  19. Ishihara K, Yamagishi N, Saito Y, Takasaki M, Konoshima T, Hatayama T (2006) Arctigenin from Fructus frctii is a novel suppressor of heat shock response in mammalian cells. Cell Stress Chaperones 11:154–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cho MK, Jang YP, Kim YC, Kim SG (2004) Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-α inhibition. Int Immunopharmacol 4:1419–1429

    Article  CAS  PubMed  Google Scholar 

  21. Nikaido T, Ohmoto T, Kinoshita T, Sankawa U, Nishibe S, Hisada S (1981) Inhibition of cyclic AMP phosphodiesterase by lignans. Chem Pharm Bull 29:3586–3592

    Article  CAS  PubMed  Google Scholar 

  22. Fujimoto T, Nose M, Takeda T, Ogihara Y, Nishibe S, Minami M (1992) Studies on the Chinese crude drug “Luoshiteng” (II) on the biologically active components in the stem part of luoshiteng originating from Trachelospermum jasminoides. Shoyakugaku Zasshi 46:224–229

    CAS  Google Scholar 

  23. Higashinakasu K, Yamada K, Shigemori H, Hasegawa K (2005) Isolation and identification of potent stimulatory allelopathic substances exuded from germinating burdock (Arctium lappa) seeds. Heterocycles 65:1431–1437

    Article  CAS  Google Scholar 

  24. Chang S-T, Wang S-Y, Su Y-C, Kuo Y-H (1999) Structural elucidation of three dibenzyl-γ-butyrolactone type lignans isolated from Taiwania (Taiwania cryptomerioides Hayata) heartwood: 7-oxohinokinin, sventenin and arctigenin. Q Jour Chin For 32:121–129

    Google Scholar 

  25. Chang S-T, Wang DS-Y, Wu C-L, Shiah S-G, Kuo Y-H, Chang C-J (2000) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55:227–232

    Article  CAS  PubMed  Google Scholar 

  26. Erdtman H, Harmatha J (1979) Phenolic and terpenoid heartwood constituents of Libocedrus yateensis. Phytochemistry 18:1495–1500

    Article  CAS  Google Scholar 

  27. Suzuki S, Umezawa T, Shimada M (2001) Norlignan biosynthesis in Asparagus officinalis L.: the norlignan originates from two non-identical phenylpropane units. J Chem Soc Perkin Trans 1:3252–3257

    Google Scholar 

  28. Suzuki S, Nakatsubo T, Umezawa T, Shimada M (2002a) First in vitro norlignan formation with Asparagus officinalis enzyme preparation. Chem Commun (Camb) 1088–1089

    Google Scholar 

  29. Suzuki S, Yamamura M, Shimada M, Umezawa T (2004) A heartwood norlignan, (E)-hinokiresinol, is formed from 4-coumaryl 4-coumarate by a Cryptomeria japonica enzyme preparation. Chem Commun (Camb) 2838–2839

    Google Scholar 

  30. Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36:1–10

    Article  CAS  PubMed  Google Scholar 

  31. Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  CAS  PubMed  Google Scholar 

  32. Schröder G, Wehinger E, Schröder J (2002) Predicting the substrates of cloned plant O-methyltransferases. Phytochemistry 59:1–8

    Article  PubMed  Google Scholar 

  33. Zubieta C, He X-Z, Dixon RA, Noel JP (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol 8:271–279

    Article  CAS  PubMed  Google Scholar 

  34. Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Parvathi K, Chen F, Guo D, Blount JW, Dixon RA (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25:193–202

    Article  CAS  PubMed  Google Scholar 

  36. Nakatsubo T, Kitamura Y, Sakakibara N, Mizutani M, Hattori T, Sakurai N, Shibata D, Suzuki S, Umezawa T (2008) At5g54160 gene encodes Arabidopsis thaliana 5-hydroxyconiferaldehyde O-methyltransferase. J Wood Sci 54:312–317

    Article  CAS  Google Scholar 

  37. Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M, Umezawa T (2007) Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a stable-isotope-dilution method. Org Biomol Chem 5:802–815

    Article  CAS  PubMed  Google Scholar 

  38. Ono E, Nakai M, Fukui Y, Tominori N, Fukuchi-Mizunati M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci U S A 103:10116–10121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Marques JV, Kim K-W, Lee C, Costa MA, May GD, Crow JA, Davin LB, Lewis NG (2013) Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis. J Biol Chem 288:466–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Umezawa T, Li L, Suzuki S, Sakakibara N, Nakatsubo T, Chiang VL (2004) A novel O-methyltransferase catalyzing a regioselective methylation of lignan. In: Proceedings of the 49th Lignin Symposium, Tsukuba, Japan, pp 33–36

    Google Scholar 

  41. Ono E (2007) PCT/JP2007/057363. http://patent.ipexl.com/WO/WOZZSLASHZZ2007ZZSLASHZZ119639.html

  42. Umezawa T, Ragamustari SK, Nakatsubo T, Wada S, Li L, Yamamura M, Sakakibara N, Hattori T, Suzuki S, Chiang VL (2013) A lignan O-methyltransferase catalyzing the regioselective methylation of matairesinol in Carthamus tinctorius. Plant Biotechnol 30:97–109

    Article  CAS  Google Scholar 

  43. Ragamustari SK, Nakatsubo T, Hattori T, Ono E, Kitamura Y, Suzuki S, Yamamura M, Umezawa T (2013) A novel O-methyltransferase involved in the first methylation step of yatein biosynthesis in Anthriscus sylvestris. Plant Biotechnol 30:315–326

    Article  CAS  Google Scholar 

  44. Ragamustari SK, Yamamura M, Ono E, Hattori T, Suzuki S, Suzuki H, Shibata D, Umezawa T (2014) Substrate-enantiomer selectivity of matairesinol O-methyltransferases. Plant Biotechnol 31:257–267

    Article  CAS  Google Scholar 

  45. Ozawa S, Davin LB, Lewis NG (1993) Formation of (−)-arctigenin in Forsythia intermedia. Phytochemistry 32:643–652

    Article  CAS  Google Scholar 

  46. Miyauchi T, Ozawa S (1998) Formation of (+)-eudesmim in Magnolia kobus DC. var. borealis Sarg. Phytochemistry 47:665–670

    Article  CAS  Google Scholar 

  47. Kranz K, Petersen M (2003) β-Peltatin 6-O-methyltransferase from suspension cultures of Linum nodiflorum. Phytochemistry 64:453–458

    Article  CAS  PubMed  Google Scholar 

  48. Wu S, Watanabe N, Mita S, Ueda Y, Shibuya M, Ebizuka Y (2003) Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. J Biosci Bioeng 96:119–128

    Article  CAS  PubMed  Google Scholar 

  49. Ounaroon A, Decker G, Schmidt J, Lottspeich F, Kutchan TM (2003) (R, S)-Reticuline 7-O-methyltransferase and (R, S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum — cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36:808–819

    Google Scholar 

  50. Dunlevy JD, Soole KL, Perkins MV, Dennis EG, Keyzers RA, Kalua CM, Boss PK (2010) Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: grape-derived aroma compounds important to wine flavour. Plant Mol Biol 74:77–89

    Article  CAS  PubMed  Google Scholar 

  51. Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20:186–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Fujii N, Inui T, Iwasa K, Morishige T, Sato F (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res 16:363–375

    Article  CAS  PubMed  Google Scholar 

  53. Li L, Popko JL, Zhang X-H, Osakabe K, Tsai CJ, Joshi CP, Chiang VL (1997) A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proc Natl Acad Sci U S A 94:5461–5466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Moyle R, Moody J, Phillips L, Walter C, Wagner A (2002) Isolation and characterization of a Pinus radiata lignin biosynthesis related O-methyltransferase promoter. Plant Cell Rep 20:1052–1060

    Article  CAS  Google Scholar 

  55. Hehmann M, Lukačin R, Ekiert H, Matern U (2004) Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O-methyltransferase. Eur J Biochem 271:932–940

    Google Scholar 

  56. Bugos RC, Chiang VLC, Campbell WH (1991) cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol 17:1203–1215

    Article  CAS  PubMed  Google Scholar 

  57. Li L, Popko JL, Umezawa T, Chiang VL (2000) 5-Hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. J Biol Chem 275:6537–6545

    Article  CAS  PubMed  Google Scholar 

  58. Gowri G, Bugos RC, Campbell WH, Maxwell CA, Dixon RA (1991) Stress responses in alfalfa (Medicago sativa L.) X. Molecular cloning and expression of S-adenosyl-L-methionine: caffeic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiol 97:7–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Zubieta C, Kota P, Ferrer J-L, Dixon RA, Noel JP (2002) Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 14:1265–1277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhang H, Wang J, Goodman HM (1997) An Arabidopsis gene encoding a putative 14-3-3-interacting protein, caffeic acid/5-hydroxyferulic acid O-methyltransferase. Biochim Biophys Acta 1353:199–202

    Article  CAS  PubMed  Google Scholar 

  61. Nakatsubo T, Li L, Hattori T, Lu S, Sakakibara N, Chiang VL, Shimada M, Suzuki S, Umezawa T (2007) Roles of 5-hydroxyconiferaldehyde and caffeoyl CoA O-methyltransferases in monolignol biosynthesis in Carthamus tinctorius. Cell Chem Technol 41:511–520

    CAS  Google Scholar 

  62. Maxwell CA, Harrison MJ, Dixon RA (1993) Molecular characterization and expression of alfalfa isoliquiritigenin 2′-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium meliloti nodulation genes. Plant J 4:971–981

    Google Scholar 

  63. Ichimura M, Furuno T, Takahashi T, Dixon RA, Ayabe S-I (1997) Enzymic O-methylation of isoliquiritigenin and licodione in alfalfa and licorice cultures. Phytochemistry 44:991–995

    Article  CAS  PubMed  Google Scholar 

  64. Koeduka T, Baiga TJ, Noel JP, Pichersky E (2009) Biosynthesis of t-anethole in anise: characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol 149:384–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Kurihara T, Kikuchi M (1979) Studies on the constituents of Anthriscus sylvestris Hoffm. II. On the components of the flowers and leaves. Yakugaku Zasshi 99:602–606

    CAS  PubMed  Google Scholar 

  66. Milovanovic M, Picuric-Jovanovic K, Vucelic-Radovic B, Vrbaski Z (1996) Antioxidant effects of flavonoids of Anthriscus sylvestris in lard. J Am Oil Chem Soc 73:773–776

    Article  CAS  Google Scholar 

  67. Umezawa T, Okunishi T, Shimada M (1997) Stereochemical diversity in lignan biosynthesis. Wood Res 84:62–75

    CAS  Google Scholar 

  68. Smeds AI, Eklund PC, Willför SM (2012) Content, composition, and stereochemical characterisation of lignans in berries and seeds. Food Chem 134:1991–1998

    Article  CAS  PubMed  Google Scholar 

  69. Umezawa T, Davin LB, Lewis NG (1991) Formation of lignans, (−)-secoisolariciresinol and (−)-matairesinol with Forsythia intermedia cell-free extracts. J Biol Chem 266:10210–10217

    CAS  PubMed  Google Scholar 

  70. Davin LB, Wang H-B, Crowell AL et al (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  CAS  PubMed  Google Scholar 

  71. Halls SC, Lewis NG (2002) Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein. Biochemistry 41:9455–9461

    Article  CAS  PubMed  Google Scholar 

  72. Pickel B, Constantin M-A, Pfannstiel J, Conrad J, Beifuss U, Schaller A (2010) An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed Engl 49:202–204

    Article  CAS  PubMed  Google Scholar 

  73. Finefield JM, Sherman DH, Kreitman M, Williams RM (2012) Enantiomeric natural products: occurrence and biogenesis. Angew Chem Int Ed Engl 51:4802–4836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Pickel B, Schaller A (2013) Dirigent proteins: molecular characteristics and potential biotechnological applications. Appl Microbiol Biotechnol 97:8429–8438

    Google Scholar 

  75. Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Hemmati S, Schmidt TJ, Fuss E (2007) (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581:603–610

    Article  CAS  PubMed  Google Scholar 

  77. Muemmler S, Rueffer M, Nagakura N, Zenk MH (1984) S-adenosyl-L-methionine: (S)-scoulerine 9-O-methyltransferase, a highly stereo- and regio-specific enzyme in tetrahydroprotoberberine biosynthesis. Plant Cell Rep 4:36–39

    Article  Google Scholar 

  78. Akashi T, VanEtten HD, Sawada Y, Wasmann CC, Uchiyama H, Ayabe S (2006) Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis. Phytochemistry 67:2525–2530

    Article  CAS  PubMed  Google Scholar 

  79. Koulman A, Bos R, Medarde M, Pras N, Quax WJ (2001) A fast and simple GC MS method for lignan profiling in Anthriscus sylvestris and biosynthetically related plant species. Planta Med 67:858–862

    Article  CAS  PubMed  Google Scholar 

  80. Umezawa T, Isohata T, Kuroda H, Higuchi T, Shimada M (1992) Chiral HPLC and LC-MS analysis of several lignans. In: Kuwahara M, Shimada M (eds) Biotechnology in pulp and paper industry. Uni, Tokyo, pp 507–512

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Umezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Umezawa, T., Ragamustari, S.K., Ono, E., Yamamura, M. (2015). O-Methyltransferases Involved in Lignan Biosynthesis. In: Jetter, R. (eds) The Formation, Structure and Activity of Phytochemicals. Recent Advances in Phytochemistry, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-20397-3_4

Download citation

Publish with us

Policies and ethics