Advertisement

Sum-Defined Chromatic Indices

  • Ping Zhang
Chapter
  • 548 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter, proper edge colorings of graphs are considered in which the colors are either positive integers or elements of \(\mathbb{Z}_{k}\) for some positive integer k. In the first instance, these edge colorings give rise to either irregular vertex colorings or proper vertex colorings; while in the second instance, the edge colorings give rise to proper vertex colorings. In both instances, however, the color of a vertex is the sum of the colors of its incident edges. We begin with edge colorings in which the colors are positive integers.

References

  1. 7.
    Andrews, E., Johnston, D., & Zhang, P. (2014). A twin edge coloring conjecture. Bulletin of the Institute of Combinatorics and Its Applications, 70, 28–44.MathSciNetGoogle Scholar
  2. 8.
    Andrews, E., Johnston, D., & Zhang, P., On twin edge colorings in trees. Journal of Combinatorial Mathematics and Combinatorial Computing (to appear).Google Scholar
  3. 9.
    Andrews, E., Helenius, L., Johnston, D., VerWys, J., & Zhang, P. (2014). On twin edge colorings of graphs. The Discussiones Mathematicae Graph Theory, 34, 613–627.MathSciNetCrossRefGoogle Scholar
  4. 28.
    Dong, A. J., Wang, G. H., & Zhang, J. H. (2014). Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree. Discrete Applied Mathematics, 166, 84–90.MathSciNetCrossRefGoogle Scholar
  5. 42.
    Flandrin, E., Marczyk, A., Przybylo, J., Saclé, J. F., & Woźniak, M. (2013). Neighbor sum distinguishing index. Graphs and Combinatorics, 29, 1329–1336.MathSciNetCrossRefGoogle Scholar
  6. 58.
    Johnston, D., & Zhang, P. (2014) An upper bound for the twin chromatic index of a graph. Congressus Numerantium, 219, 175–182MathSciNetGoogle Scholar
  7. 70.
    Mahéo, M., & Saclé, J. F. (2008). Some results on (, p, g)-valuation of connected graphs. Report de Recherche 1497. Université de Paris-Sud, Center d’Orsay.Google Scholar
  8. 79.
    Wang, G. H., & Yan, G. Y. (2014). An improved upper bound for the neighbor sum distinguishing index of graphs. Discrete Applied Mathematics, 175, 126–128.MathSciNetCrossRefGoogle Scholar
  9. 80.
    Wang, G. H., Chen, Z. M., & Wang, J. H. (2014). Neighbor sum distinguishing index of planar graphs. Discrete Mathematics, 334, 70–73.MathSciNetCrossRefGoogle Scholar

Copyright information

© Ping Zhang 2015

Authors and Affiliations

  • Ping Zhang
    • 1
  1. 1.Department of MathematicsWestern Michigan UniversityKalamazooUSA

Personalised recommendations