Advertisement

Sum-Defined Neighbor-Distinguishing Colorings

  • Ping Zhang
Chapter
  • 547 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

We now switch our attention from edge colorings of a graph G that give rise to vertex-distinguishing vertex colorings to those that result in neighbor-distinguishing vertex colorings. That is, suppose that \(c: E(G) \rightarrow [k]\) for some positive integer k is an unrestricted edge coloring. For each vertex v of G, we assign a color \(c^{{\prime}}(v)\) to v that depends in some way on the colors of the edges incident with v.

References

  1. 1.
    Addario-Berry, L., Aldred, R. E. L., Dalal, K., & Reed, B. A. (2005). Vertex colouring edge partitions. The Journal of Combinatorial Theory, 94, 237–244.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 19.
    Chartrand, G., & Zhang, P. (2009). Chromatic graph theory. Boca Raton: Chapman & Hall/CRC.zbMATHGoogle Scholar
  3. 37.
    Escuadro, H., Okamoto, F., & Zhang, P. (2008). A three-color problem in graph theory. Bulletin of the Institute of Combinatorics and Its Applications, 52, 65–82.MathSciNetzbMATHGoogle Scholar
  4. 65.
    Kalkowski, M., Karoński, M., & Pfender, F. (2010). Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture. Journal of Combinatorial Theory, Series B, 100, 347–349.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 67.
    Karoński, M., Łuczak, T., & Thomason, A. (2004). Edge weights and vertex colours. The Journal of Combinatorial Theory, 91, 151–157.Google Scholar
  6. 74.
    Przybylo, J., & Woźniak, M. (2010). On a 1, 2 Conjecture. Discrete Mathematics & Theoretical Computer Science, 12, 101–108.MathSciNetzbMATHGoogle Scholar

Copyright information

© Ping Zhang 2015

Authors and Affiliations

  • Ping Zhang
    • 1
  1. 1.Department of MathematicsWestern Michigan UniversityKalamazooUSA

Personalised recommendations