Advertisement

The Irregularity Strength of a Graph

  • Ping Zhang
Chapter
  • 552 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

Throughout Chaps. 2–7, we will be concerned with connected graphs G of order n ≥ 3 and size m and an unrestricted edge coloring of G, that is, no condition is placed on the manner in which colors are assigned to the edges of G.

Keywords

Irregularity Strength Vertex-distinguishing Edge Coloring Regular Graphs Large Color Unicyclic Graphs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    Aigner, M., & Triesch, E. (1990). Irregular assignments of trees and forests. The SIAM Journal on Discrete Mathematics, 3, 439–449.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 6.
    Amar, D., & Togni, O. (1998). Irregularity strength of trees. Discrete Mathematics, 190, 15–38.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 11.
    Baril, J. L., Kheddouci, H., & Togni, O. (2005). The irregularity strength of circulant graphs. Discrete Mathematics, 304, 1–10.MathSciNetCrossRefGoogle Scholar
  4. 13.
    Bohman, T., & Kravitz, D. (2004). On the irregularity strength of trees. Journal for Graph Theory, 45, 241–254.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 24.
    Chartrand, G., Jacobson, M. S., Lehel, J., Oellermann, O. R., Ruiz, S., & Saba, F. (1988). Irregular networks. Congressus Numerantium, 64, 197–210.MathSciNetzbMATHGoogle Scholar
  6. 25.
    Cuckler, B., & Lazebnik, F. (2008). Irregularity strength of dense graphs. Journal for Graph Theory, 58, 299–313.MathSciNetCrossRefGoogle Scholar
  7. 26.
    Dinitz, J. H., Garnick, D. K., & Gyárfás, A. (1992). On the irregularity strength of the m × n grid. Journal for Graph Theory, 16, 355–374.CrossRefGoogle Scholar
  8. 27.
    Dirac, G. A. (1952). Some theorems on abstract graphs. Proceedings of the London Mathematical Society, 2, 69–81.Google Scholar
  9. 38.
    Faudree, R. J., & Lehel, J. (1987). Bound on the irregularity strength of regular graphs. In Combinatorics. Colloq. Math. Soc. János Bolyai (Vol. 52, pp. 247–256). Amsterdam: North Holland.Google Scholar
  10. 39.
    Faudree, R. J., Gyárfás, A., & Schelp, R. H. (1987). On graphs of irregularity strength 2. In Combinatorics. Colloq. Math. Soc. János Bolyai (Vol. 52, pp. 239–246). Amsterdam: North Holland.Google Scholar
  11. 40.
    Faudree, R. J., Jacobson, M. S., Kinch, L., & Lehel, J. (1991). Irregularity strength of dense graphs. Discrete Mathematics, 91, 45–59.MathSciNetCrossRefGoogle Scholar
  12. 41.
    Faudree, R. J., Jacobson, M. S., Lehel, J., & Schelp, R. H. (1989). Irregular networks, regular graphs and integer matrices with distinct row and column sums. Discrete Mathematics, 76, 223–240.MathSciNetCrossRefGoogle Scholar
  13. 42.
    Flandrin, E., Marczyk, A., Przybylo, J., Saclé, J. F., & Woźniak, M. (2013). Neighbor sum distinguishing index. Graphs and Combinatorics, 29, 1329–1336.MathSciNetCrossRefGoogle Scholar
  14. 51.
    Gyárfás, A. (1988). The irregularity strength of K m, m is 4 for odd m. Discrete Mathematics, 71, 273–274.MathSciNetCrossRefGoogle Scholar
  15. 52.
    Gyárfás, A. (1989). The irregularity strength of K nmK 2. Utilitas Mathematica, 35, 111–113.MathSciNetGoogle Scholar

Copyright information

© Ping Zhang 2015

Authors and Affiliations

  • Ping Zhang
    • 1
  1. 1.Department of MathematicsWestern Michigan UniversityKalamazooUSA

Personalised recommendations