Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 38))

  • 956 Accesses

Abstract

The sediment in reservoirs is mainly derived from the sedimentation of suspended grains, such as organic particles and inorganic minerals, carried by runoff scouring from vegetation. There are three parts in this chapter: (1) Effects of pollutants released from sediment on water quality; (2) Effects of metals released from sediment on water quality; (3) Algal blooms and their impact on water quality. The decrease of the oxidation–reduction potential (ORP) in a multiphase interface under anaerobic conditions resulted in the increase of soluble ferrous hydroxide. Phosphate combining with iron hydroxide in sediment is released to interstitial water and then diffused into the overlying water. In addition, the metabolism of microbes resulted in the decrease of the ORP in anaerobic conditions, promoting the release of soluble iron in sediment and then causing the huge release of phosphorus. The release of endogenous phosphorus from sediment under anaerobic conditions resulted in the significant increase of PO4 3− in the overlying water. The release of phosphorus from sediment depends on the conditions of the ORP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Micić V, Kruge MA, Hofmann T (2013) Variations of common riverine contaminants in reservoir sediments. Sci Total Environ 458–460:90–100

    Article  Google Scholar 

  2. Ma HB, Song JM, Yuan HM (2003) Nitrogen forms and their functions in recycling of the Bohai Sea sediments. Geochimica 32(1):48–54 (in Chinese)

    CAS  Google Scholar 

  3. Lauren SC, Maria GP, William MB, Amy TS, James MM (2012) Nitrogen cycling within suboxic and anoxic sediments from the continental margin of Western North America. Mar Chem 128–129:12–254.

    Google Scholar 

  4. Pavanelli D, Selli L (2013) Effective size characteristics of suspended sediment and nutrient concentrations during flood events in the reno river tributaries. Pro environ sci 19: 723-732

    Google Scholar 

  5. Ruttenberg KC (1992) Development of a sediment extraction method for different forms of phosphorus in marine sediments[J]. Limnol Oceanoger 37(2): 1460-1482

    Google Scholar 

  6. Huang TL, Yan S, Chai BB, Liu H (2011) Phosphorus forms and its distribution in source water reservoir sediment. J Tianjin University 44(7):607–612 (in Chinese)

    Google Scholar 

  7. Huang TL, Chai BB, Qiu ES, Zhu WH (2010) Microbial effects on phosphorus release from sediments on the multi-phase interface of water-sediment-biofacies. J Basic Sci Eng 18(1):61–70 (in Chinese)

    Google Scholar 

  8. Hu HJ, Wei YX (2006) Chinese freshwater algae—systems, classification and ecology. Science Press, Beijing (in Chinese)

    Google Scholar 

  9. Kangkang (2007) Proliferation of algae and TN/TP Correlation. Chongqing: Urban Construction and Environmental Engineering, Chongqing University

    Google Scholar 

  10. Peng JJ, Li CH, Huang XH (2004) City eutrophication causes and characteristics. Ecol Sci 23(4):370–373

    Google Scholar 

  11. Chow CWK, Drikas M, House J, Burch MD, Velzeboer RMA (1999) The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Res 33(15):3253–3262

    Article  CAS  Google Scholar 

  12. Haider S, Naithani V, Viswanathan PN, Kakkar P (2003) Cyanobacterial toxins: a growing environmental concern. Chemosphere 52(1):1–21

    Article  CAS  Google Scholar 

  13. Fromme H (2000) Occurrence of cyanobacterial toxins~microcystins and anatoxina in Berlin water bodies with implications to human health and regulations. Environ Toxicol 15(2):120–130

    Article  CAS  Google Scholar 

  14. Vezie C (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu. Microb Ecol 35(2):126–135

    Article  CAS  Google Scholar 

  15. Wirsing B (1998) First report on the identification of microcystin in a water bloom collected in Belgium. Syst Appl Microbiol 21(1):23–27

    Article  CAS  Google Scholar 

  16. Mahakhjant A (1998) Detection of microcystins from cyanobacterial water blooms in Thailand fresh water. Physiol Res 46:25–29

    Google Scholar 

  17. Park HD, Iwami C, Watanabe MF, Harada K, Okino T, Hayashi H (1998) Temporal Variabilities of the concentrations of Intra-and extracellular microcystin and toxic microcystis species in a hypertrophic lake, lake Suwa, Japan[J]. Environ. Toxic. water quality, 13(1): 61-72

    Google Scholar 

  18. Shen JG (2001) Contamination of microcystin toxicity mechanisms and detection methods. Prevent Med Inform 17(1):10–11.

    Google Scholar 

  19. Zhang WH, Xu XQ, Qiu CQ (2001) Advance in study on microcystins in aquatic environment. Res. Environ. Sci. 14(2): 57-62 (in Chinese)

    Google Scholar 

  20. Chen Y, Zhang YS, Lin YD (2002) Taihu Lake Basin Water microcystin content survey. China Public Health 18(12):1455–1456 (in Chinese)

    CAS  Google Scholar 

  21. Mu LN, Chen CW, Yu SZ, Liu JL, Wu YY, Zhu WC (2000) Taihu Lake water content of microcystin survey research and treatment methods. China Public Health 16(19):803–804 (in Chinese)

    CAS  Google Scholar 

  22. Xu HB, Sun M, Sui HX (2003) Dynamics of fish in the Jiangxi Poyang Microcystin Contamination. Health Res 32(3):192–197 (in Chinese)

    CAS  Google Scholar 

  23. Sivonen K (1996) Cyanobacterial toxins and toxin production. Phycologia 35(1):12–24.

    Google Scholar 

  24. Rinehart KL (1994) Structure and biosynthesis of toxins from blue-green algae(cyanobacteria)[J]. Appl. Physiol, 76(6): 1759-1762

    Google Scholar 

  25. Law LA, Robertson PKJ, Cornish BJPA (2003) Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts[J]. Catal, 213(1): 109-113

    Google Scholar 

  26. Watanabe MF, Tsuji K (1992) Release of heptapeptide toxin (Microcystin) during the decomposition process of Microcystis aeruginosa. Nat Toxins 1:48–53

    Article  CAS  Google Scholar 

  27. Rivasseau C, Martins S, Hennion MC (1998) Determination of some physiochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. J Chromatogr 799(1–2):155–169

    Article  CAS  Google Scholar 

  28. De Maagd PGJ, Hendriks AJ, Seinen W, Sijm DTHM (1999) pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR[J]. Wat. Res., 33(3): 677-680

    Google Scholar 

  29. Tsuji K, Watanuki T, Kondo F, Watanabe MF, Nakazawa H, Suzuki M, Uchida H, Harada KI (1997) Stability of microcystins from cyanobacteria. 4. Effect of chlorination on decomposition. Toxicon 35(7):1033–1041

    Article  CAS  Google Scholar 

  30. Ones GJ, Orr PT (1994) Release and degradation of microcystin following algaecide treatment of a microcystis aeruginosa bloom in a recreational lake. As determined by HPLC and protein phosphatase inhibition assay[J]. Wat. Res., 28(4): 871-876

    Google Scholar 

  31. Tsuji K, Naito S (1993) Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization[J]. Environ. Sci. technol., 28(1): 173-177

    Google Scholar 

  32. Kaya K, Sano T (1998) A photodetoxification mechanism of the cyanobacterial hepatotoxin microcystin-LR by ultraviolet irradiation. Chem Res Toxicol 11(3):159–163

    Article  CAS  Google Scholar 

  33. Chen YP (2005) Efficacy and mechanism of Fenton role in the removal of microcystins. Fuzhou University Graduate Thesis 1: 6

    Google Scholar 

  34. Utkilen H, Gjolme N (1998) Energy the dominating controlling factor for microcystin production in Microcystis aeruginosa. Compilation of abstracts. 4th International Conference on Toxic Cyanobacteria 63

    Google Scholar 

  35. Min L, Ying L, Shunzhang Y (2001) Effects of nitrogen, phosphorus, iron, zinc on microcystis aeruginosa growth and toxin production. Shanghai Environ Sci 20(4):166–170

    Google Scholar 

  36. Borner T (1998) Microcystins synthetase: gene and enzyme. 4th International Conference on Toxic Cyanobacteria 58

    Google Scholar 

  37. Meipner K, Kittmann E, Borner T (1996) Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiol Lett 135:295–303

    Article  Google Scholar 

  38. Zhu GC, Wu LX (2005) Microcystins in drinking water limits and biological pretreatment control. Water Suppl Drain 31(2):17–20

    CAS  Google Scholar 

  39. Nishizawa T, Asayama M, Fujii K, Harada K, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. Eur J Biochem 126(3):520–529

    Article  CAS  Google Scholar 

  40. Lahti K, Rapala J, Fardig M, Niemela M, Sivonen K (1997) Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water. Water Res 31(5):1005–1012

    Article  CAS  Google Scholar 

  41. Zhang WH, Song LR, Xu XQ, Liu YD, Zhang XH (2004) A preliminary study of microcystin toxin fate in natural waters. Resour Environ Yangtze River Basin 13(1):84–88 (in Chinese)

    CAS  Google Scholar 

  42. Feitz AJ, Waite TD, Jones GJ, Boyden BH, Orr PT (1999) Photocatalytic degradation of the blue green algal toxin Microcystin-LR in a natural organic aqueous matrix. Environ Sci Technol 33(2):243–249

    Article  CAS  Google Scholar 

  43. Jin LN, Zhang WH, Zheng L, Xu XQ (2002) Biodegradation of microcystin in dianchi lake aquatic environment. China Environ. Sci., 22(2): 189-192 (in Chinese)

    Google Scholar 

  44. Cousins IT, Bealing DJ, James HA, Sutton A (1996) Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Res 30(2):481–485

    Article  CAS  Google Scholar 

  45. Miura GA (1991) Hepatotoxicity of microcystin-LR in fed and fasted rates. Toxicon 29(3):337–346

    Article  CAS  Google Scholar 

  46. Harada K (1996) Trace analysis of microcystins. Phycologia 35(Suppl 6):36–41

    Article  Google Scholar 

  47. Humpage AR, Falconer IR (1999) Microcystin-LR and liver tumor promotion: effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environ Toxicol 14:61–75

    Article  CAS  Google Scholar 

  48. Boudrez A, Evens K, Beullens M, Wealkens E, Stalmans W, Bollen M (1999) Identification of MYPT1 and NIPP1 as subunits of protein phosphatase 1 in rat liver cytosol. FEBS Lett 455:175–178

    Article  CAS  Google Scholar 

  49. Guzman RE, Solter PF (1999) Hepatic oxidative stress following prolonged sublethal Microcystin-LR exposure. Toxicological Pathology 27:582–588

    Article  CAS  Google Scholar 

  50. Vasconcelos VM, Pereira E (2001) Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Research 35:1354–1357

    Article  CAS  Google Scholar 

  51. Lawton LA, Codd GA (1991) Cyanobacterial (blue-green algae) toxins and their significance in U.K. and European waters. J Institut Water Environ Manag 5:460–465

    Article  CAS  Google Scholar 

  52. Hirooka EY, Pinotti MHP, Tsutsumi T, Yoshida F, Ueno Y (1999) Survey of microcystins in water between 1995 and 1996 in Parana, Brazil using ELISA. Nat Toxins 7(3):103–109

    Article  CAS  Google Scholar 

  53. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CEM, Antunes MBD, de Melo DA, Lyra TM, Barreto VST, Azevedo SMFO, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878

    Article  CAS  Google Scholar 

  54. Yu SZ (1995) Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol 10:674–682

    Article  CAS  Google Scholar 

  55. Ueno Y, Nagata S, Tsutsumi T (1996) Detection of microcystins, a blue-green algal hepatotoxins, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in china, by highly sensitive immunoassay[J]. Carcinogenesis 17: 1317-1321

    Google Scholar 

  56. Donatella P, Lavinia S (2013) Effective size characteristics of suspended sediment and nutrient concentrations during flood events in the Reno River tributaries (Northern Italy). Procedia Environ Sci 19:723–732

    Article  Google Scholar 

  57. Feng TG, Wan XN (2006) Eutrophic lakes and repair technology of harm. Soil Water Conserv 13(2):145–147

    Google Scholar 

  58. Hao ZW, Xu XQ (2001) Determined by HPLC with solid phase extraction of trace microcystin. Anal Chem 29(5):522–525

    Google Scholar 

  59. Jin XQ, Chen WM (2005) Microcystin in Taihu Lake and its relationship with plankton. China Environ Sci 25(1):28–31

    CAS  Google Scholar 

  60. Otsuka S, Suda S, Li RH, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1999) Phylogenetic relationship between toxic and non-toxic strains of genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21

    Article  CAS  Google Scholar 

  61. Wu W, Qu JH, Chen JZ, Hu GD, Li H (2002) Toxicological effects on fish liver. China Environ Sci 22(1):67–70 (in Chinese)

    CAS  Google Scholar 

  62. Zhao I, Wang X, Xie Q, Cheng K, Li YY, Wu HY, Zhao J, Gan XS (1999) Dopant “blooms” microcapsules filled isolation and identification of toxins. Central China Normal University (Natural Science) 33(2):250–254 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinglin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, J., Xia, C., Zhou, Z., Huang, T. (2016). Impact of Contaminated Sediment on the Water Quality of Typical Reservoirs. In: Huang, T. (eds) Water Pollution and Water Quality Control of Selected Chinese Reservoir Basins. The Handbook of Environmental Chemistry, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-20391-1_7

Download citation

Publish with us

Policies and ethics