Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 38))

  • 957 Accesses

Abstract

In situ biological purification technology has been widely used in the engineering of environmental pollution treatment, since it is a more convenient and effective approach, with low cost. Therefore, the potential risk to the safety of biological agents should be seriously taken into consideration. The efficient aerobic denitrifying bacteria strain HF3, which is isolated and cultured in a low-nitrogen medium in order to remove nitrogen under oligotrophic conditions, has been used for bioremediation treatment, with effective and reliable ability in removing the nutrients of aquatic environments. Different to other biological agents, the efficient strain used for biological purification was cultured from raw water, and was isolated among indigenous bacteria. It is, therefore, the inferior species, and pathogenic bacteria had been excluded during the isolation. In addition, non-native application of the efficient strains which had a high environmental risk could be avoided during the application. In this chapter, we discuss the safety of the efficient strain HF3 by three aspects: biological safety on drinking water quality, ecological safety on indigenous microorganisms, and toxicological safety on aquatic animals. The results showed that the efficient aerobic denitrifying bacteria strain HF3 had no significant effect on the microbial community, and had no toxicity on mice, luminescent bacteria, or zebrafish. The efficient strain HF3 could be inactivated without any influence on the inactivation efficiency. The results suggest that the biological agent used for bioremediation treatment is safe and poses no risks to the urban drinking water supply, which could provide theoretical guarantees for the security of a wider range of application. It is important to reveal the effect and ecological assessment of microbial remediation. Therefore, in this chapter, we describe the effect and ecological assessment of the microbial remediation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112:351–359

    Article  CAS  Google Scholar 

  2. Tian WJ, Hao FH, Zhai JB (2008) Elasticity plastic filler for purification of polluted streams in situ entering lake. Environ Sci 29:1308–1312

    Google Scholar 

  3. Ji M, Zhou J, Ren ZY (2002) Comparison on bio-contact oxidation tank and ceramic bio-filter process for micro-polluted raw water pre-treatment. Water Wastewater 28:26–29

    Google Scholar 

  4. Lee KC, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040–2052

    Article  CAS  Google Scholar 

  5. Janez V, Milenko R (2006) Denitrification of groundwater in the biofilm reactor with a specific biomass support material. Acta Chim Slov 53:396–400

    Google Scholar 

  6. Fabbricino M, Pettab L (2007) Drinking water denitrification in membrane bioreactor/membrane contactor systems. Desalination 210:163–174

    Article  CAS  Google Scholar 

  7. Singer A, Parnes S, Gross A, Sagi A, Brenner A (2008) A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture. Aquacult Eng 39:72–77

    Article  Google Scholar 

  8. Ovez B, Ozgen S, Yuksel M (2006) Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source. Process Biochem 41:1539–1544

    Article  CAS  Google Scholar 

  9. Buttiglieri G, Malpei F, Daverio E, Melchiori M, Nieman H, Ligthart J (2005) Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor. Desalination 178:211–218

    Article  CAS  Google Scholar 

  10. Fan B, Qu JH, Liu SX (2001) Nitrate removal from drinking water by three-dimension electrode electrochemical-biofilm reactors. Acta Sci Circum 21:39–43

    CAS  Google Scholar 

  11. Luo QF, Tan YM, Wang L (2003) Research on drinking water denitrification. J Safety Environ 3:58–61

    CAS  Google Scholar 

  12. Shnel N, Barak Y, Ezer T (2002) Design and performance of a zero-discharge tilapia recirculating system. Aquacult Eng 26:191–203

    Article  Google Scholar 

  13. Gómez MA, González-López J, Hontoria-García E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80:69–80

    Article  Google Scholar 

  14. Rivas Z, Medina HL, Gutierrez J, Gutierrer E (2000) Nitrogen and phosphorus levels in sediments from tropical catatumbo river (Venezuela). Water Air Soil Pollut 117:27–37

    Article  CAS  Google Scholar 

  15. Beutel MW (2006) Inhibition of ammonia release from anoxic profundal sediments in lakes using hypolimnetic oxygenation. Ecol Eng 28:271–279

    Article  Google Scholar 

  16. Huang TL, Cong HB, Zhou ZM, He WJ, Yin PJ (2006) The onsite experiment study of enhanced bio-contact oxidation process for pretreatment of Luanhe River water. Acta Sci Circum 26:786–790

    CAS  Google Scholar 

  17. Huang TL, Jia SJ, Cong HB (2008) Experimental study on the water-lifting aerator enhanced chemical oxidation process for polluted raw water. Water Wastewater Eng 34:52–55

    CAS  Google Scholar 

  18. Heaton THE, Talma AS, Vogel JC (1983) Origin and history of nitrate in confined groundwater in the western Kalahari. J Hydrol 62:243–262

    Article  CAS  Google Scholar 

  19. Tsai YL, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074

    CAS  Google Scholar 

  20. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  21. Sheffield VC, Cox DR, Lerman LS (1989) Attachment of 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86:232–236

    Article  CAS  Google Scholar 

  22. Janse I, Bok J, Zwart G (2004) A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. J Microbiol Methods 57:279–281

    Article  CAS  Google Scholar 

  23. Li MY, Zhou GH, Xu XL, Li CB, Zhu WY (2006) Changes of bacterial diversity and main flora in chilled pork during storage using PCR-DGGE. Food Microbiol 23:607–611

    Article  CAS  Google Scholar 

  24. Xu M (2005) Study on biological contact oxidation process under oligotrophic conditions. Environmental Engineering Department, Guangdong University of Technology, China

    Google Scholar 

  25. Chen CL, Liu WT, Chong ML, Wong MT, Ong SL, Seah H, Ng WJ (2004) Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach. Appl Microbiol Biotechnol 63:466–473

    Article  CAS  Google Scholar 

  26. Hoff JC (1986) Inactivation of microbial agents by chemical disinfectants. USEPA, Washington, DC

    Google Scholar 

  27. Hao ZM, Shi H, Zhou WJ (2009) Application of javel water in aquatic product processing. Mod Food Sci Technol 25:286–290 (in Chinese)

    CAS  Google Scholar 

  28. Zhu XW, Liu SS, Ge HL, Liu Y (2009) Comparison between the short-term and the long-term toxicity of six triazine herbicides on photobacteria Q67. Water Res 43:1731–1739

    Article  CAS  Google Scholar 

  29. Ma XY, Wang XC, Liu YJ (2011) Study of the variation of ecotoxicity at different stages of domestic wastewater treatment using Vibrio-qinghaiensis sp.-Q67. J Hazard Mater 190:100–105

    Article  CAS  Google Scholar 

  30. Ma M, Tong Z, Wang Z, Zhu W (1999) Acute toxicity bioassay using the freshwater luminescent bacterium Vibrio-qinghaiensis sp. Nov.—Q67. Bull Environ Contam Toxicol 62:247–253

    Article  CAS  Google Scholar 

  31. Uhl W, Schaule G (2004) Establishment of HPC(R2A) for regrowth control in non-chlorinated distribution systems. Int J Food Microbiol 92:317–325

    Article  CAS  Google Scholar 

  32. Zhou JZ, Bruns M, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:3216–3221

    Google Scholar 

  33. Ma WK, Siciliano SD, Germida JJ (2005) A PCR-DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biol Biochem 37:1589–1597

    Article  CAS  Google Scholar 

  34. Liang ZB, Drijber RA, Lee DJ, Dwiekat IM, Harris SD, Wedin DA (2008) A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biol Biochem 40:956–966

    Article  CAS  Google Scholar 

  35. Zhang HH, Huang TL, Liu TT (2013) Sediment enzyme activities and microbial community diversity in an oligotrophic drinking water reservoir, eastern China. PLoS One 8:e78571

    Article  CAS  Google Scholar 

  36. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  CAS  Google Scholar 

  37. Schwarzott D, Schussler A (2001) A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza 10:203–207

    Article  CAS  Google Scholar 

  38. Kowalchuk GA, De Souza FA, Van Veen JA (2002) Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol Ecol 11:571–581

    Article  CAS  Google Scholar 

  39. Cornejo P, Azcon-Aguilar C, Barea JM, Ferrol N (2004) Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 241:265–270

    Article  CAS  Google Scholar 

  40. Zheng GQ, Zheng ZY, Xu X, Hu ZH (2010) Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense Mill. of different regions and varieties. Biochem Syst Ecol 38:275–284

    Article  CAS  Google Scholar 

  41. Hill AJ, Teraoka H, Heideman W, Peterson R (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19

    Article  CAS  Google Scholar 

  42. Xiang J, Yang H, Che C, Zou H, Yang H, Wei Y, Quan J, Zhang H (2009) Identifying tumor cell growth inhibitors by combinatorial chemistry and zebrafish assays. PLoS One 4:e4361

    Article  Google Scholar 

  43. Pereira S, Vasconcelos V, Antunes A (2013) Computational study of the covalent bonding of microcystins to cysteine residues – a reaction involved in the inhibition of the PPP family of protein phosphatases. FEBS J 280:674–680

    Article  CAS  Google Scholar 

  44. Westerfield M (2007) The zebrafish book: a guide for the laboratory use of zebrafish (Danio Rerio). University of Oregon Press, Eugene

    Google Scholar 

  45. Christen V, Zucchi S, Fent K (2011) Effects of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) on expression of genes involved in hormonal pathways in fathead minnows (Pimephales promelas) and link to vitellogenin induction and histology. Aquat Toxicol 102:167–176

    Article  CAS  Google Scholar 

  46. Zhu B, Liu T, Hu X, Wang G (2013) Developmental toxicity of 3,4-dichloroaniline on rare minnow (Gobiocypris rarus) embryos and larvae. Chemosphere 90:1132–1139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, H., Yang, X. (2016). Effect and Ecological Assessment of Microbial Remediation. In: Huang, T. (eds) Water Pollution and Water Quality Control of Selected Chinese Reservoir Basins. The Handbook of Environmental Chemistry, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-20391-1_14

Download citation

Publish with us

Policies and ethics