Skip to main content

Experimental Investigation of a Turbulent Boundary Layer Subject to an Adverse Pressure Gradient at \(Re_{\theta }\) up to 10000 Using Large-Scale and Long-Range Microscopic Particle Imaging

  • Conference paper
  • First Online:
Book cover Progress in Wall Turbulence 2

Part of the book series: ERCOFTAC Series ((ERCO,volume 23))

Abstract

We present an experimental investigation and data analysis of a turbulent boundary layer flow at a significant adverse pressure gradient for two Reynolds numbers \(Re_\theta =6200\) and \(Re_\theta =8000\). We perform detailed multi-resolution measurements by combining large-scale and long-range microscopic particle imaging. We investigate scaling laws for the mean velocity and for the total shear stress in the inner layer. In the inner part of the inner layer the mean velocity can be fitted by a log-law. In the outer part a modified log-law provides a good fit, which depends on the pressure gradient parameter and on a parameter for the mean inertial effects. Emphasis is on the Reynolds number effects on the mean velocity and shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.E. Alving, H.H. Fernholz, Mean-velocity scaling in and around a mild, turbulent separation bubble. Phys. Fluids 7, 1956–1969 (1995)

    Article  Google Scholar 

  2. K.C. Brown, P.N. Joubert, The measurement of skin friction in turbulent boundary layers with adverse pressure gradients. J. Fluid Mech. 35, 737–757 (1969)

    Article  Google Scholar 

  3. K.A. Chauhan, P.A. Monkewitz, H.M. Nagib, Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404 (2009)

    Article  Google Scholar 

  4. C. Cierpka, S. Scharnowski, C.J. Kähler, Parallax correction for precise near-wall flow investigations using particle imaging. Appl. Opt. 52, 2923–2931 (2013)

    Article  Google Scholar 

  5. C.M. de Silva, E.G. Gnanamanickam, C. Atkinson, N.A. Buchmann, N. Hutchins, J. Soria, I. Marusic, High spatial range velocity measurements in a high Reynolds number turbulent boundary layer. Phys. Fluids 26:025117–1–19 (2014)

    Google Scholar 

  6. S.A. Dixit, O.N. Ramesh, Determination of skin friction in strong pressure-gradient equilibrium and near-equilibrium turbulent boundary layers. Exp. Fluids 47, 1045–1058 (2009)

    Article  Google Scholar 

  7. K. Gersten, H. Herwig, Strömungsmechanik. Grundlagen der Impuls-, Wärme- und Stoffübertragung aus asymptotischer Sicht. Vieweg, 1992

    Google Scholar 

  8. A.G. Gungor, Y. Maciel, M.P. Simens, J. Soria, Analysis of a turbulent boundary layer subjected to a strong adverse pressure gradient. J. Phys.: Conf. Ser. 506, 012007 (2014)

    Google Scholar 

  9. S. Herpin, C.Y. Wong, M. Stanislas, J. Soria, Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range. Exp. Fluids 45, 745–763 (2008)

    Article  Google Scholar 

  10. C.J. Kähler, S. Scharnowski, C. Cierpka, On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52, 1641–1656 (2012)

    Article  MATH  Google Scholar 

  11. T. Knopp, N.A. Buchmann, D. Schanz, B. Eisfeld, C. Cierpka, R. Hain, A. Schröder,C.J. Kähler, Investigation of scaling laws in a turbulent boundary layer flow with adverse pressure gradient using PIV. J Turbul 16, 250–272 (2015)

    Google Scholar 

  12. T. Knopp, D. Schanz, A. Schröder, M. Dumitra, R. Hain, C.J. Kähler, Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at \(Re_\theta \) up to 10000. Flow Turbul. Combust. 92, 451–471 (2014)

    Article  Google Scholar 

  13. H. McDonald, The effect of pressure gradient on the law of the wall in turbulent flow. J. Fluid Mech. 35, 311–336 (1969)

    Article  Google Scholar 

  14. H. Nagib. Personal communication. 2013

    Google Scholar 

  15. H.M. Nagib and K.A. Chauhan. Variations of von Karman coefficient in canonical flows. Phys. Fluids, 20:101518–1–10, 2008

    Google Scholar 

  16. T.B. Nickels, Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217–239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. P.E. Skare, P.A. Krogstad, A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319–348 (1994)

    Article  Google Scholar 

  18. W. Szablewski, Turbulente Strömungen in divergenten Kanälen. Ing.-Arch. 22, 268–281 (1954)

    Article  MATH  Google Scholar 

  19. T. Wei, R. Schmidt, P. McMurtry, Comment on the clauser chart method for determining the friction velocity. Exp. Fluids 38, 695–699 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Skare for providing his data. The authors are also grateful to Profs. Rossow, Radespiel, Nagib and Herwig and to Drs. B. Eisfeld, A. Krumbein and D. Schwamborn for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Knopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Knopp, T. et al. (2016). Experimental Investigation of a Turbulent Boundary Layer Subject to an Adverse Pressure Gradient at \(Re_{\theta }\) up to 10000 Using Large-Scale and Long-Range Microscopic Particle Imaging. In: Stanislas, M., Jimenez, J., Marusic, I. (eds) Progress in Wall Turbulence 2. ERCOFTAC Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-20388-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20388-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20387-4

  • Online ISBN: 978-3-319-20388-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics