Skip to main content

Riblets Induced Drag Reduction on a Spatially Developing Turbulent Boundary Layer

  • Conference paper
  • First Online:

Part of the book series: ERCOFTAC Series ((ERCO,volume 23))

Abstract

Large eddy simulations have been conducted to gain further insight into the drag-reducing mechanisms of riblets in zero-pressure gradient turbulent boundary layer. The retained groove geometry achieves 9.8 % drag reduction on the controlled zone developing from \(Re_{\theta } = 670\) to 975. It is shown that the turbulent contribution to the drag—as defined by Fukagata et al. Phys. Fluids, 14(11):L73, 2002 [7]—is the most affected. In the light of the obtained results, energy and enstrophy budgets will finally conduct to isolate a key mechanism involved in the riblets drag reduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Aupoix, G. Pailhas, R. Houdeville, Towards a general strategy to model riblet effects. AIAA J. 50(3), 708–716 (2012)

    Article  Google Scholar 

  2. D.W. Bechert, M. Bruse, W. Hage, J.G.T. Van Der Hoeven, G. Hoppe, Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997)

    Article  Google Scholar 

  3. H. Choi, P. Moin, J. Kim, On the effect of riblets in fully developed laminar channel flows. Phys. Fluids A 3(8), 1892–1896 (1991)

    Article  MATH  Google Scholar 

  4. H. Choi, P. Moin, J. Kim, Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503–539 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Coustols, A. Savill, Turbulent Skin-Friction Drag Reduction by Active and Passive Means: Parts 1 and 2. Special Course on Skin-Friction Drag Reduction (Brussels, Belgium, 1992)

    Google Scholar 

  6. S. Deck, N. Renard, R. Laraufie, P.E. Weiss, Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to \({R}e_{\delta } = 13650\). J. Fluid Mech. 743, 202–248 (2014)

    Article  Google Scholar 

  7. K. Fukagata, K. Iwamoto, N. Kasagi, Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), L73 (2002)

    Article  Google Scholar 

  8. R. García-Mayoral, J. Jiménez, Drag reduction by riblets. Philos. Trans. R. Soc. A 369(1940), 1412–1427 (2011)

    Article  Google Scholar 

  9. D.B. Goldstein, T.C. Tuan, Secondary flow induced by riblets. J. Fluid Mech. 363, 115–151 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Jiménez, Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)

    Article  Google Scholar 

  11. L. Larchevêque, P. Sagaut, T.H. Lê, P. Comte, Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265–301 (2004)

    Article  MATH  Google Scholar 

  12. C. Lee, J. Kim, H. Choi, Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245–258 (1998)

    Article  MATH  Google Scholar 

  13. E. Lenormand, P. Sagaut, L. Ta Phuoc, P. Comte, Subgrid-scale models for large-eddy simulation of compressible wall bounded flows. AIAA J. 38(8), 1340–1350 (2000)

    Article  Google Scholar 

  14. P. Luchini, F. Manzo, A. Pozzi, Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109 (1991)

    MATH  Google Scholar 

  15. I. Mary, P. Sagaut, Large eddy simulation of flow around an airfoil near stall. AIAA J. 40(6), 1139 (2002)

    Article  Google Scholar 

  16. M. Pamiès, P.E. Weiss, E. Garnier, S. Deck, P. Sagaut, Generation of synthetic turbulent inflow data for large-eddy simulation of spatially-evolving wall-bounded flows. Phys. Fluids 21(4), 045103 (2009)

    Article  Google Scholar 

  17. Y. Peet, P. Sagaut, Theoretical prediction of turbulent skin friction on geometrically complex surfaces. Phys. Fluids 21(10), 105105 (2009)

    Article  Google Scholar 

  18. P. Ricco, C. Ottonelli, Y. Hasegawa, M. Quadrio, Changes in turbulent dissipation in a channel flow with oscillating walls. J. Fluid Mech. 700, 77–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Schlatter, R. Örlü, Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)

    Article  MATH  Google Scholar 

  20. P.R. Spalart, Direct simulation of a turbulent boundary layer up to \({\rm Re}_{\theta }=1410\). J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  Google Scholar 

  21. H. Tennekes, J.L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, 1972)

    Google Scholar 

  22. M.J. Walsh, L.M. Weinstein, Drag and heat transfer on surfaces with small longitudinal fins. AIAA Paper 78-1161 (1978)

    Google Scholar 

Download references

Acknowledgments

This work was granted access to the HPC resources from IDRIS under the allocation 2014-100392 made by the GENCI. The thesis of Amaury Bannier is partly funded by Ecole Polytechnique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury Bannier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bannier, A., Garnier, E., Sagaut, P. (2016). Riblets Induced Drag Reduction on a Spatially Developing Turbulent Boundary Layer. In: Stanislas, M., Jimenez, J., Marusic, I. (eds) Progress in Wall Turbulence 2. ERCOFTAC Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-20388-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20388-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20387-4

  • Online ISBN: 978-3-319-20388-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics