Skip to main content

Abstract

Surgical incision and manipulation of tissues lead to cell disruption and activation of humoral and cell-mediated inflammatory responses. A variety of intracellular chemical mediators including potassium, adenosine, prostanoids, bradykinin, nerve growth factors, cytokines, and chemokines are released from the injured tissues, then activate and sensitize peripheral nociceptors such as Aδ and c-fibers to mechanical stimuli (primary hyperalgesia). These pro-inflammatory substances together with the release of substance P and calcitonin gene-related peptide also sensitize silent Aδ nociceptors in the adjacent noninjured tissues (secondary hyperalgesia). Repeated and prolonged stimulation of peripheral nociceptors in the injured area and in the surrounding noninjured tissues leads to an increased firing of neurons at the level of the dorsal horn of the spinal cord, mediated by the activation of N-methyl-d-aspartate (NMDA) receptors (central sensitization). Clinically these pathophysiologic changes manifest with hyperalgesia, allodynia in the area of the surgical incision, with or without late persistent postsurgical pain. Descending sympathetic inhibitory pathways also take an important role at the level of the spinal cord by modulating transmission of noxious inputs. Acute surgical pain can therefore be somatic, visceral, or neuropathic depending on the type of surgery and on the surgical approach. Response to nociception contributes to activate and potentiate the stress response associated with surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kehlet H. Manipulation of the metabolic response in clinical practice. World J Surg. 2000;24(6):690–5.

    Article  CAS  PubMed  Google Scholar 

  2. Ong CK, Lirk P, Seymour RA, et al. The efficacy of preemptive analgesia for acute postoperative pain management: a meta-analysis. Anesth Analg. 2005;100(3):757–73. table of contents.

    Article  PubMed  Google Scholar 

  3. Buvanendran A, Kroin JS. Useful adjuvants for postoperative pain management. Best Pract Res Clin Anaesthesiol. 2007;21(1):31–49.

    Article  CAS  PubMed  Google Scholar 

  4. Werawatganon T, Charuluxanun S. Patient controlled intravenous opioid analgesia versus continuous epidural analgesia for pain after intra-abdominal surgery. Cochrane Database Syst Rev 2005;(1):CD004088.

    Google Scholar 

  5. Finucane BT, Ganapathy S, Carli F, et al. Prolonged epidural infusions of ropivacaine (2 mg/mL) after colonic surgery: the impact of adding fentanyl. Anesth Analg. 2001;92(5):1276–85.

    Article  CAS  PubMed  Google Scholar 

  6. Block BM, Liu SS, Rowlingson AJ, et al. Efficacy of postoperative epidural analgesia: a meta-analysis. JAMA. 2003;290(18):2455–63.

    Article  CAS  PubMed  Google Scholar 

  7. Niemi G, Breivik H. The minimally effective concentration of adrenaline in a low-concentration thoracic epidural analgesic infusion of bupivacaine, fentanyl and adrenaline after major surgery. A randomized, double-blind, dose-finding study. Acta Anaesthesiol Scand. 2003;47(4):439–50.

    Article  CAS  PubMed  Google Scholar 

  8. Sakaguchi Y, Sakura S, Shinzawa M, et al. Does adrenaline improve epidural bupivacaine and fentanyl analgesia after abdominal surgery? Anaesth Intensive Care. 2000;28(5):522–6.

    CAS  PubMed  Google Scholar 

  9. Rawal N, Allvin R. Epidural and intrathecal opioids for postoperative pain management in Europe—a 17-nation questionnaire study of selected hospitals. Euro Pain Study Group on Acute Pain. Acta Anaesthesiol Scand. 1996;40(9):1119–26.

    Article  CAS  PubMed  Google Scholar 

  10. Carli F, Kehlet H, Baldini G, et al. Evidence basis for regional anesthesia in multidisciplinary fast-track surgical care pathways. Reg Anesth Pain Med. 2011;36(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  11. Uchida I, Asoh T, Shirasaka C, et al. Effect of epidural analgesia on postoperative insulin resistance as evaluated by insulin clamp technique. Br J Surg. 1988;75(6):557–62.

    Article  CAS  PubMed  Google Scholar 

  12. Jorgensen H, Wetterslev J, Moiniche S, et al. Epidural local anaesthetics versus opioid-based analgesic regimens on postoperative gastrointestinal paralysis, PONV and pain after abdominal surgery. Cochrane Database Syst Rev 2000;(4):CD001893.

    Google Scholar 

  13. Wu CL, Cohen SR, Richman JM, et al. Efficacy of postoperative patient-controlled and continuous infusion epidural analgesia versus intravenous patient-controlled analgesia with opioids: a meta-analysis. Anesthesiology. 2005;103(5):1079–88. quiz 1109–10.

    Article  CAS  PubMed  Google Scholar 

  14. Rigg JR, Jamrozik K, Myles PS, et al. Epidural anaesthesia and analgesia and outcome of major surgery: a randomised trial. Lancet. 2002;359(9314):1276–82.

    Article  PubMed  Google Scholar 

  15. Hiltebrand LB, Koepfli E, Kimberger O, et al. Hypotension during fluid-restricted abdominal surgery: effects of norepinephrine treatment on regional and microcirculatory blood flow in the intestinal tract. Anesthesiology. 2011;114(3):557–64.

    Article  CAS  PubMed  Google Scholar 

  16. Gould TH, Grace K, Thorne G, et al. Effect of thoracic epidural anaesthesia on colonic blood flow. Br J Anaesth. 2002;89(3):446–51.

    Article  CAS  PubMed  Google Scholar 

  17. Gramigni E, Bracco D, Carli F. Epidural analgesia and postoperative orthostatic haemodynamic changes. Eur J Anaesthesiol. 2013;30(7):398–404.

    Article  CAS  PubMed  Google Scholar 

  18. Zaouter C, Kaneva P, Carli F. Less urinary tract infection by earlier removal of bladder catheter in surgical patients receiving thoracic epidural analgesia. Reg Anesth Pain Med. 2009;34(6):542–8.

    Article  PubMed  Google Scholar 

  19. Horlocker TT, Wedel DJ, Rowlingson JC, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med. 2010;35(1):64–101.

    Article  CAS  PubMed  Google Scholar 

  20. Gogarten W, Vandermeulen E, Van Aken H, et al. Regional anaesthesia and antithrombotic agents: recommendations of the European Society of Anaesthesiology. Eur J Anaesthesiol. 2010;27(12):999–1015.

    Article  CAS  PubMed  Google Scholar 

  21. Levy BF, Scott MJ, Fawcett W, et al. Randomized clinical trial of epidural, spinal or patient-controlled analgesia for patients undergoing laparoscopic colorectal surgery. Br J Surg. 2011;98(8):1068–78.

    Article  CAS  PubMed  Google Scholar 

  22. Halabi WJ, Kang CY, Nguyen VQ, et al. Epidural analgesia in laparoscopic colorectal surgery: a nationwide analysis of use and outcomes. JAMA Surg. 2014;149(2):130–6.

    Article  PubMed  Google Scholar 

  23. Popping DM, Elia N, Marret E, et al. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg. 2008;143(10):990–9. discussion 1000.

    Article  PubMed  Google Scholar 

  24. Wongyingsinn M, Baldini G, Charlebois P, et al. Intravenous lidocaine versus thoracic epidural analgesia: a randomized controlled trial in patients undergoing laparoscopic colorectal surgery using an enhanced recovery program. Reg Anesth Pain Med. 2011;36(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  25. Saclarides TJ. Current choices—good or bad—for the proactive management of postoperative ileus: a surgeon’s view. J Perianesth Nurs. 2006;21(2A Suppl):S7–15.

    Article  PubMed  Google Scholar 

  26. Hermanides J, Hollmann MW, Stevens MF, et al. Failed epidural: causes and management. Br J Anaesth. 2012;109(2):144–54.

    Article  CAS  PubMed  Google Scholar 

  27. Wongyingsinn M, Baldini G, Stein B, et al. Spinal analgesia for laparoscopic colonic resection using an enhanced recovery after surgery programme: better analgesia, but no benefits on postoperative recovery: a randomized controlled trial. Br J Anaesth. 2012;108(5):850–6.

    Article  CAS  PubMed  Google Scholar 

  28. Meylan N, Elia N, Lysakowski C, et al. Benefit and risk of intrathecal morphine without local anaesthetic in patients undergoing major surgery: meta-analysis of randomized trials. Br J Anaesth. 2009;102(2):156–67.

    Article  CAS  PubMed  Google Scholar 

  29. Hubner M, Lovely JK, Huebner M, et al. Intrathecal analgesia and restrictive perioperative fluid management within enhanced recovery pathway: hemodynamic implications. J Am Coll Surg. 2013;216(6):1124–34.

    Article  PubMed  Google Scholar 

  30. 3rd National Audit Project of the Royal College of Anaesthetists (NAP3): major complications of central neuraxial block.

    Google Scholar 

  31. Levy BF, Scott MJ, Fawcett WJ, et al. 23-Hour-stay laparoscopic colectomy. Dis Colon Rectum. 2009;52(7):1239–43.

    Article  CAS  PubMed  Google Scholar 

  32. Sridhar P, Sistla SC, Ali SM, et al. Effect of intravenous lignocaine on perioperative stress response and post-surgical ileus in elective open abdominal surgeries: a double-blind randomized controlled trial. ANZ J Surg. 2014. doi:10.1111/ans.12783.

    PubMed  Google Scholar 

  33. Marret E, Rolin M, Beaussier M, et al. Meta-analysis of intravenous lidocaine and postoperative recovery after abdominal surgery. Br J Surg. 2008;95(11):1331–8.

    Article  CAS  PubMed  Google Scholar 

  34. Vigneault L, Turgeon AF, Cote D, et al. Perioperative intravenous lidocaine infusion for postoperative pain control: a meta-analysis of randomized controlled trials. Can J Anaesth. 2011;58(1):22–37.

    Article  PubMed  Google Scholar 

  35. McCarthy GC, Megalla SA, Habib AS. Impact of intravenous lidocaine infusion on postoperative analgesia and recovery from surgery: a systematic review of randomized controlled trials. Drugs. 2010;70(9):1149–63.

    Article  CAS  PubMed  Google Scholar 

  36. Kaba A, Laurent SR, Detroz BJ, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106(1):11–8. discussion 15–6.

    Article  CAS  PubMed  Google Scholar 

  37. Karthikesalingam A, Walsh SR, Markar SR, et al. Continuous wound infusion of local anaesthetic agents following colorectal surgery: systematic review and meta-analysis. World J Gastroenterol. 2008;14(34):5301–5.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Liu SS, Richman JM, Thirlby RC, et al. Efficacy of continuous wound catheters delivering local anesthetic for postoperative analgesia: a quantitative and qualitative systematic review of randomized controlled trials. J Am Coll Surg. 2006;203(6):914–32.

    Article  PubMed  Google Scholar 

  39. Beaussier M, El’Ayoubi H, Schiffer E, et al. Continuous preperitoneal infusion of ropivacaine provides effective analgesia and accelerates recovery after colorectal surgery: a randomized, double-blind, placebo-controlled study. Anesthesiology. 2007;107(3):461–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bertoglio S, Fabiani F, Negri PD, et al. The postoperative analgesic efficacy of preperitoneal continuous wound infusion compared to epidural continuous infusion with local anesthetics after colorectal cancer surgery: a randomized controlled multicenter study. Anesth Analg. 2012;115(6):1442–50.

    Article  CAS  PubMed  Google Scholar 

  41. Jouve P, Bazin JE, Petit A, et al. Epidural versus continuous preperitoneal analgesia during fast-track open colorectal surgery: a randomized controlled trial. Anesthesiology. 2013;118(3):622–30.

    Article  PubMed  Google Scholar 

  42. Ventham NT, O’Neill S, Johns N, et al. Evaluation of novel local anesthetic wound infiltration techniques for postoperative pain following colorectal resection surgery: a meta-analysis. Dis Colon Rectum. 2014;57(2):237–50.

    Article  PubMed  Google Scholar 

  43. Boulind CE, Ewings P, Bulley SH, et al. Feasibility study of analgesia via epidural versus continuous wound infusion after laparoscopic colorectal resection. Br J Surg. 2013;100(3):395–402.

    Article  CAS  PubMed  Google Scholar 

  44. Charlton S, Cyna AM, Middleton P, et al. Perioperative transversus abdominis plane (TAP) blocks for analgesia after abdominal surgery. Cochrane Database Syst Rev 2010;(12):CD007705.

    Google Scholar 

  45. Siddiqui MR, Sajid MS, Uncles DR, et al. A meta-analysis on the clinical effectiveness of transversus abdominis plane block. J Clin Anesth. 2011;23(1):7–14.

    Article  PubMed  Google Scholar 

  46. Johns N, O’Neill S, Ventham NT, et al. Clinical effectiveness of transversus abdominis plane (TAP) block in abdominal surgery: a systematic review and meta-analysis. Colorectal Dis. 2012;14(10):e635–42.

    Article  CAS  PubMed  Google Scholar 

  47. De Oliveira Jr GS, Castro-Alves LJ, Nader A, et al. Transversus abdominis plane block to ameliorate postoperative pain outcomes after laparoscopic surgery: a meta-analysis of randomized controlled trials. Anesth Analg. 2014;118(2):454–63.

    Article  PubMed  Google Scholar 

  48. Bharti N, Kumar P, Bala I, et al. The efficacy of a novel approach to transversus abdominis plane block for postoperative analgesia after colorectal surgery. Anesth Analg. 2011;112(6):1504–8.

    Article  CAS  PubMed  Google Scholar 

  49. Owen DJ, Harrod I, Ford J, et al. The surgical transversus abdominis plane block—a novel approach for performing an established technique. BJOG. 2011;118(1):24–7.

    Article  CAS  PubMed  Google Scholar 

  50. Favuzza J, Delaney CP. Outcomes of discharge after elective laparoscopic colorectal surgery with transversus abdominis plane blocks and enhanced recovery pathway. J Am Coll Surg. 2013;217(3):503–6.

    Article  PubMed  Google Scholar 

  51. Keller DS, Stulberg JJ, Lawrence JK, et al. Process control to measure process improvement in colorectal surgery: modifications to an established enhanced recovery pathway. Dis Colon Rectum. 2014;57(2):194–200.

    Article  PubMed  Google Scholar 

  52. Favuzza J, Brady K, Delaney CP. Transversus abdominis plane blocks and enhanced recovery pathways: making the 23-h hospital stay a realistic goal after laparoscopic colorectal surgery. Surg Endosc. 2013;27(7):2481–6.

    Article  PubMed  Google Scholar 

  53. Brady RR, Ventham NT, Roberts DM, et al. Open transversus abdominis plane block and analgesic requirements in patients following right hemicolectomy. Ann R Coll Surg Engl. 2012;94(5):327–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Allcock E, Spencer E, Frazer R, et al. Continuous transversus abdominis plane (TAP) block catheters in a combat surgical environment. Pain Med. 2010;11(9):1426–9.

    Article  PubMed  Google Scholar 

  55. Kadam RV, Field JB. Ultrasound-guided continuous transverse abdominis plane block for abdominal surgery. J Anaesthesiol Clin Pharmacol. 2011;27(3):333–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bjerregaard N, Nikolajsen L, Bendtsen TF, et al. Transversus abdominis plane catheter bolus analgesia after major abdominal surgery. Anesthesiol Res Pract. 2012;2012:596536.

    PubMed Central  PubMed  Google Scholar 

  57. Niraj G, Kelkar A, Jeyapalan I, et al. Comparison of analgesic efficacy of subcostal transversus abdominis plane blocks with epidural analgesia following upper abdominal surgery. Anaesthesia. 2011;66(6):465–71.

    Article  CAS  PubMed  Google Scholar 

  58. Walter CJ, Maxwell-Armstrong C, Pinkney TD, et al. A randomised controlled trial of the efficacy of ultrasound-guided transversus abdominis plane (TAP) block in laparoscopic colorectal surgery. Surg Endosc. 2013;27(7):2366–72.

    Article  PubMed  Google Scholar 

  59. Niraj G, Kelkar A, Hart E, et al. Comparison of analgesic efficacy of four-quadrant transversus abdominis plane (TAP) block and continuous posterior TAP analgesia with epidural analgesia in patients undergoing laparoscopic colorectal surgery: an open-label, randomised, non-inferiority trial. Anaesthesia. 2014;69(4):348–55.

    Article  CAS  PubMed  Google Scholar 

  60. Abdallah FW, Chan VW, Brull R. Transversus abdominis plane block: a systematic review. Reg Anesth Pain Med. 2012;37(2):193–209.

    Article  CAS  PubMed  Google Scholar 

  61. Kahokehr A, Sammour T, Soop M, et al. Intraperitoneal local anaesthetic in abdominal surgery—a systematic review. ANZ J Surg. 2011;81(4):237–45.

    Article  PubMed  Google Scholar 

  62. Kahokehr A, Sammour T, Srinivasa S, et al. Systematic review and meta-analysis of intraperitoneal local anaesthetic for pain reduction after laparoscopic gastric procedures. Br J Surg. 2011;98(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  63. Moiniche S, Jorgensen H, Wetterslev J, et al. Local anesthetic infiltration for postoperative pain relief after laparoscopy: a qualitative and quantitative systematic review of intraperitoneal, port-site infiltration and mesosalpinx block. Anesth Analg. 2000;90(4):899–912.

    Article  CAS  PubMed  Google Scholar 

  64. Kahokehr A, Sammour T, Shoshtari KZ, et al. Intraperitoneal local anesthetic improves recovery after colon resection: a double-blinded randomized controlled trial. Ann Surg. 2011;254(1):28–38.

    Article  PubMed  Google Scholar 

  65. Marret E, Kurdi O, Zufferey P, et al. Effects of nonsteroidal antiinflammatory drugs on patient-controlled analgesia morphine side effects: meta-analysis of randomized controlled trials. Anesthesiology. 2005;102(6):1249–60.

    Article  CAS  PubMed  Google Scholar 

  66. Klein M. Postoperative non-steroidal anti-inflammatory drugs and colorectal anastomotic leakage. NSAIDs and anastomotic leakage. Dan Med J. 2012;59(3):B4420.

    PubMed  Google Scholar 

  67. Burton TP, Mittal A, Soop M. Nonsteroidal anti-inflammatory drugs and anastomotic dehiscence in bowel surgery: systematic review and meta-analysis of randomized, controlled trials. Dis Colon Rectum. 2013;56(1):126–34.

    Article  PubMed  Google Scholar 

  68. Souter AJ, Fredman B, White PF. Controversies in the perioperative use of nonsteroidal antiinflammatory drugs. Anesth Analg. 1994;79(6):1178–90.

    Article  CAS  PubMed  Google Scholar 

  69. Gunter JB, Varughese AM, Harrington JF, et al. Recovery and complications after tonsillectomy in children: a comparison of ketorolac and morphine. Anesth Analg. 1995;81(6):1136–41.

    CAS  PubMed  Google Scholar 

  70. Moiniche S, Romsing J, Dahl JB, et al. Nonsteroidal antiinflammatory drugs and the risk of operative site bleeding after tonsillectomy: a quantitative systematic review. Anesth Analg. 2003;96(1):68–77. table of contents.

    Article  CAS  PubMed  Google Scholar 

  71. Rusy LM, Houck CS, Sullivan LJ, et al. A double-blind evaluation of ketorolac tromethamine versus acetaminophen in pediatric tonsillectomy: analgesia and bleeding. Anesth Analg. 1995;80(2):226–9.

    CAS  PubMed  Google Scholar 

  72. Remy C, Marret E, Bonnet F. Effects of acetaminophen on morphine side-effects and consumption after major surgery: meta-analysis of randomized controlled trials. Br J Anaesth. 2005;94(4):505–13.

    Article  CAS  PubMed  Google Scholar 

  73. Delaney CP, Fazio VW, Senagore AJ, et al. ‘Fast track’ postoperative management protocol for patients with high co-morbidity undergoing complex abdominal and pelvic colorectal surgery. Br J Surg. 2001;88(11):1533–8.

    Article  CAS  PubMed  Google Scholar 

  74. Maund E, McDaid C, Rice S, et al. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs for the reduction in morphine-related side-effects after major surgery: a systematic review. Br J Anaesth. 2011;106(3):292–7.

    Article  CAS  PubMed  Google Scholar 

  75. McNicol ED, Tzortzopoulou A, Cepeda MS, et al. Single-dose intravenous paracetamol or propacetamol for prevention or treatment of postoperative pain: a systematic review and meta-analysis. Br J Anaesth. 2011;106(6):764–75.

    Article  CAS  PubMed  Google Scholar 

  76. Hernandez-Palazon J, Tortosa JA, Martinez-Lage JF, et al. Intravenous administration of propacetamol reduces morphine consumption after spinal fusion surgery. Anesth Analg. 2001;92(6):1473–6.

    Article  CAS  PubMed  Google Scholar 

  77. Issioui T, Klein KW, White PF, et al. The efficacy of premedication with celecoxib and acetaminophen in preventing pain after otolaryngologic surgery. Anesth Analg. 2002;94(5):1188–93. table of contents.

    Article  CAS  PubMed  Google Scholar 

  78. Chandok N, Watt KD. Pain management in the cirrhotic patient: the clinical challenge. Mayo Clin Proc. 2010;85(5):451–8.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Jones C, Kelliher L, Dickinson M, et al. Randomized clinical trial on enhanced recovery versus standard care following open liver resection. Br J Surg. 2013;100(8):1015–24.

    Article  CAS  PubMed  Google Scholar 

  80. Bell RF, Dahl JB, Moore RA, et al. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev 2006;(1):CD004603.

    Google Scholar 

  81. Weinbroum AA. Non-opioid IV, adjuvants in the perioperative period: pharmacological and clinical aspects of ketamine and gabapentinoids. Pharmacol Res. 2012;65(4):411–29.

    Article  CAS  PubMed  Google Scholar 

  82. White PF. The changing role of non-opioid analgesic techniques in the management of postoperative pain. Anesth Analg. 2005;101(5 Suppl):S5–22.

    Article  PubMed  Google Scholar 

  83. Dauri M, Faria S, Gatti A, et al. Gabapentin and pregabalin for the acute post-operative pain management. A systematic-narrative review of the recent clinical evidences. Curr Drug Targets. 2009;10(8):716–33.

    Article  CAS  PubMed  Google Scholar 

  84. Ho KY, Gan TJ, Habib AS. Gabapentin and postoperative pain—a systematic review of randomized controlled trials. Pain. 2006;126(1–3):91–101.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang J, Ho KY, Wang Y. Efficacy of pregabalin in acute postoperative pain: a meta-analysis. Br J Anaesth. 2011;106(4):454–62.

    Article  CAS  PubMed  Google Scholar 

  86. Dahl JB, Mathiesen O, Kehlet H. An expert opinion on postoperative pain management, with special reference to new developments. Expert Opin Pharmacother. 2010;11(15):2459–70.

    Article  CAS  PubMed  Google Scholar 

  87. Buvanendran A, Kroin JS, Della Valle CJ, et al. Perioperative oral pregabalin reduces chronic pain after total knee arthroplasty: a prospective, randomized, controlled trial. Anesth Analg. 2010;110(1):199–207.

    Article  CAS  PubMed  Google Scholar 

  88. Macrae WA. Chronic pain after surgery. Br J Anaesth. 2001;87(1):88–98.

    Article  CAS  PubMed  Google Scholar 

  89. Becker G, Blum HE. Novel opioid antagonists for opioid-induced bowel dysfunction and postoperative ileus. Lancet. 2009;373(9670):1198–206.

    Article  CAS  PubMed  Google Scholar 

  90. Kraft M, Maclaren R, Du W, et al. Alvimopan (entereg) for the management of postoperative ileus in patients undergoing bowel resection. P T. 2010;35(1):44–9.

    PubMed Central  PubMed  Google Scholar 

  91. Senagore AJ, Bauer JJ, Du W, et al. Alvimopan accelerates gastrointestinal recovery after bowel resection regardless of age, gender, race, or concomitant medication use. Surgery. 2007;142(4):478–86.

    Article  PubMed  Google Scholar 

  92. Obokhare ID, Champagne B, Stein SL, et al. The effect of alvimopan on recovery after laparoscopic segmental colectomy. Dis Colon Rectum. 2011;54(6):743–6.

    Article  PubMed  Google Scholar 

  93. Touchette DR, Yang Y, Tiryaki F, et al. Economic analysis of alvimopan for prevention and management of postoperative ileus. Pharmacotherapy. 2012;32(2):120–8.

    Article  PubMed  Google Scholar 

  94. Esteban F, Cerdan FJ, Garcia-Alonso M, et al. A multicentre comparison of a fast track or conventional postoperative protocol following laparoscopic or open elective surgery for colorectal cancer surgery. Colorectal Dis. 2014;16(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  95. Zhuang CL, Ye XZ, Zhang XD, et al. Enhanced recovery after surgery programs versus traditional care for colorectal surgery: a meta-analysis of randomized controlled trials. Dis Colon Rectum. 2013;56(5):667–78.

    Article  PubMed  Google Scholar 

  96. Spanjersberg WR, Reurings J, Keus F et al. Fast track surgery versus conventional recovery strategies for colorectal surgery. Cochrane Database Syst Rev. 2011;(2):CD007635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle G. Cologne M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cologne, K.G., Baldini, G. (2015). Choosing Analgesia to Facilitate Recovery. In: Feldman, L., Delaney, C., Ljungqvist, O., Carli, F. (eds) The SAGES / ERAS® Society Manual of Enhanced Recovery Programs for Gastrointestinal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-20364-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20364-5_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20363-8

  • Online ISBN: 978-3-319-20364-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics