Advertisement

Conditioning Circuits for Capacitive Energy Harvesters

  • D. GalaykoEmail author
Chapter

Abstract

This chapter presents basic information about conditioning circuits used with capacitive transducers. This is a very important topic, since capacitive transducers require specific dynamic biasing which needs to be synchronized with the variation of the capacitance. Since the power of conversion with capacitive transducers is often low and since the generation uses a part of the energy generated by the transducer, design of such a circuit is not a simple task, and several different techniques exist to achieve it. In this chapter, we overview three families of conditioning circuits: continuous conditioning circuit, circuits implementing triangular and rectangular QV cycles. Their advantages and drawbacks are discussed.

Keywords

Voltage Source Load Resistance Charge Pump Converted Energy Converted Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., et al. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3), 035,001.Google Scholar
  2. 2.
    Bennet, A., & Kaye, R. (1787). An account of a doubler of electricity, or a machine by which the least conceivable quantity of positive or negative electricity may be continually doubled, till it becomes perceptible by common electrometers, or visible in sparks. Philosophical Transactions of the Royal Society of London, 77, 288–296.Google Scholar
  3. 3.
    de Queiroz, A. C. M., & Domingues, M. (2011). The doubler of electricity used as battery charger. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(12), 797–801.CrossRefGoogle Scholar
  4. 4.
    de Queiroz, A. C. M. (2010). Electrostatic vibrational energy harvesting using a variation of Bennet’s doubler. In 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 404–407). IEEE.Google Scholar
  5. 5.
    Despesse, G. (2005). Etude des phénomènes physiques utilisables pour alimenter en énergie électrique des micro-systèmes communicants.Google Scholar
  6. 6.
    Despesse, G., Jager, T., Jean-Jacques, C., Léger, J. M., Vassilev, A., Basrour, S., et al. (2005). Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. In Proceedings of the Design, Test, Integration and Packaging of MEMS and MOEMS (pp. 386–390).Google Scholar
  7. 7.
    Dorzhiev, V., Karami, A., Basset, P., Marty, F., Dragunov, V., & Galayko, D. (2014). Electret-free micromachined silicon electrostatic vibration energy harvester with the bennet’s doubler as conditioning circuit. Electron Device Letters, 36(2), 183–135.CrossRefGoogle Scholar
  8. 8.
    Dragunov, V., & Dorzhiev, V. (2013). Electrostatic vibration energy harvester with increased charging current. In Journal of Physics: Conference Series (Vol. 476, p. 012115). IOP Publishing.Google Scholar
  9. 9.
    Dudka, A., Galayko, D., & Basset, P. (2012). Design of controller IC for asynchronous conditioning circuit of an electrostatic vibration energy harvester. In IEEE International Conference on Internet of Things, 2012 Workshop on energy and Wireless Sensors.Google Scholar
  10. 10.
    Dudka, A., Galayko, D., Blokhina, E., & Basset, P. (2014). Smart integrated conditioning electronics for electrostatic vibration energy harvesters. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2600–2603). IEEE.Google Scholar
  11. 11.
    Florentino, H. R., Freire, R. C. S., Sá, A. V. S., Florentino, C., & Galayko, D. (2011). Electrostatic vibration energy harvester with piezoelectric start-up generator. In 2011 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1343–1346). IEEE.Google Scholar
  12. 12.
    Galayko, D., Blokhina, E., Basset, P., Cottone, F., Dudka, A., O’Riordan, E., et al. (2013). Tools for analytical and numerical analysis of electrostatic vibration energy harvesters: Application to a continuous mode conditioning circuit. In Journal of Physics: Conference Series (Vol. 476, p. 012076).Google Scholar
  13. 13.
    Galayko, D., Dudka, A., Karami, A., O’Riordan, E., Blokhina, E., Feely, O., et al. (2015). Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle—part 1: Analysis of the electrical domain. IEEE Transactions on Circuits and System I, 62(11), 2652–2663.Google Scholar
  14. 14.
    Kempitiya, A., Borca-Tasciuc, D. A., & Hella, M. M. (2013). Low-power interface IC for tri-plate electrostatic energy converters. IEEE Transactions on Power Electronics, 28(2), 609–614. doi: 10.1109/TPEL.2012.2213676.CrossRefGoogle Scholar
  15. 15.
    Lefeuvre, E., Wei, J., Mathias, H., & Costa, F. (2015). Single-switch inductorless power management circuit for electrostatic vibration energy harvesters. In Proceeding of IEEE NEWCAS 2015 Conference.Google Scholar
  16. 16.
    Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., & Lang, J. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76 (2001).Google Scholar
  17. 17.
    Mitcheson, P. D., Sterken, T., He, C., Kiziroglou, M., Yeatman, E., & Puers, R. (2008). Electrostatic microgenerators. Measurement and Control, 41(4), 114–119.CrossRefGoogle Scholar
  18. 18.
    Mur-Miranda, J. (2004). Electrostatic Vibration-to-Electric Energy Conversion. Ph.D. thesis. MIT.Google Scholar
  19. 19.
    Nayfeh, A. (1993). Introduction to perturbation techniques. Wiley.Google Scholar
  20. 20.
    Okamoto, H., Suzuki, T., Mori, K., & Kuwano, H. (2009). A concept of an electret power generator integrated with a rectifier. Washington DC: PowerMEMS.Google Scholar
  21. 21.
    Risquez, S., Wei, J., Woytasik, M., Parrain, F., & Lefeuvre, E. (2014). Self-biased inductor-less interface circuit for electret-free electrostatic energy harvesters. In Journal of Physics: Conference Series (Vol. 557, pp. 12,052–12,056). IOP Publishing.Google Scholar
  22. 22.
    Roundy, S., Wright, P., & Pister, K. (2002). Micro-electrostatic vibration-to-electricity converters. In Proceedings of 2002 ASME International Mechanical Engineering Congress.Google Scholar
  23. 23.
    Senturia, S. D. (2001). Microsystem design (Vol. 3). Boston: Kluwer Academic Publishers.Google Scholar
  24. 24.
    Sterken, T., Fiorini, P., Baert, K., Puers, R., & Borghs, G. (2003). An electret-based electrostatic/spl mu/-generator. In 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems (Vol. 2, pp. 1291–1294). IEEE.Google Scholar
  25. 25.
    Torres, E. O., & Rincon-Mora, G. A. (2009). Electrostatic energy-harvesting and battery-charging CMOS system prototype. IEEE Transactions on Circuits and Systems, I(56), 1938–1948.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yen, B. C., & Lang, J. H. (2006). A variable-capacitance vibration-to-electric energy harvester. IEEE Transaction on Circuits and Systems-I: Regular papers IEEE, 53(2), 288–295.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.UPMC—Sorbonne UniversitiesParisFrance

Personalised recommendations