Nonlinear Dynamics of Ambient Noise-Driven Graphene Nanostructured Devices for Energy Harvesting

  • A. El AroudiEmail author
  • M. López-Suárez
  • E. Alarcón
  • R. Rurali
  • G. Abadal


Nonlinearities have been shown to play an important role in increasing the extracted energy of energy harvesting devices at the macro- and micro scales. Vibration-based energy harvesting on the nanoscale has also received attention. In this chapter, we characterize the nonlinear dynamical behavior of a strained nanostructured graphene for its potential use in energy harvesting applications. First, a compressed vibrating membrane graphene sheet free from any external excitation is characterized. A continuous-time dynamical model of the system in the form of a double-well single degree of freedom second-order differential equation is derived. Its equilibrium points are obtained and their stability is studied. Then, random vibrations are considered as the main ambient energy source for the system and its performances in terms of the well occupation zones, RMS value of the position, and the corresponding energy harvested are presented in the steady-state nonequilibrium regime when the noise level is considered as a control parameter. Nonlinear analysis is carried out by computing state space trajectories, probability density and FFT spectra. The ultimate goal of this parameter space exploration based upon a behavioral model is to provide design-oriented guidelines for engineering graphene-based mechanical harvesters. Then, the maximum noise level able to optimally harvest random vibrational energy is discussed. The chapter ends by characterizing the nonlinear dynamical behavior of an array of three coupled strained nanostructured graphene. The array is formed by three compressed vibrating membrane graphene sheet subject to external vibrational noise excitation.


Equilibrium Point Compression Ratio Graphene Sheet Noise Intensity Energy Harvester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Spanish ministerio de Economía y Competitividad under grants DPI2013-47437-R and by the RUE CSD2009-00046 (Consolider-Ingenio 2010), FIS2009-12721-C04-03, FIS2012-37549-C05-05, ENE2009-14340-C02-02 and FP7-ICT-P.No.: 270005-ZEROPOWER.


  1. 1.
    Kaźmierski, T. J., & Beeby, S. (Eds.) (2011). Energy harvesting systems. Principles, modeling and applications. Springer.Google Scholar
  2. 2.
    Neri, I., Travasso, F., Vocca, H., & Gammaitoni, L. (2011). Nonlinear noise harvesters for nanosensors. Nano Communication Networks, 2(4), 230–234.CrossRefGoogle Scholar
  3. 3.
    Gammaitoni, L., Vocca, H., Neri, I., Travasso, F., & Orfei, F. (2007). Vibration energy harvestng: linear and nonlinear oscillator approaches. In Sustainable energy harvesting technologies-past, present and future (pp. 171–190).Google Scholar
  4. 4.
    Tang, L., Yang, Y., & Soh, K. (2010). Toward broadband vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 21, 1867–1896. Dec.Google Scholar
  5. 5.
    Ralman, R., Brennan, M. J., Mace, B. R., & Kovacic, I. (2010). Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dynamics, 59, 545–558.CrossRefzbMATHGoogle Scholar
  6. 6.
    Trigona, C., Dumas, N., Latorre, L., Andò, B., Bagliom, S., & Nouet, P. (2011). Exploiting benfits of a periodically-forced nonlinear oscillator for energy harvesting from ambient vibration. Procedia Engineering, 2–4.Google Scholar
  7. 7.
    Liu, H., Tay, C. J., Quan, C., Kobayashi, T., & Lee, C. (2011). Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. Journal of Microelectromechanical Systems, 20(5), 1131–1142.Google Scholar
  8. 8.
    Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., & Wang, Z. L. (2010). Self-powered nanowire devices. Nature Nanotechnology, 5(5).Google Scholar
  9. 9.
    Wang, Z. L., Wang, X., Song, J., Liu, J., & Gao, Y. (2008). Piezoelectric nanogenerators for self-powered nanodevices. Pervasive Computing, 7(1), 48–55.Google Scholar
  10. 10.
    Quin, Y., Wang, X., & Wang, Z. L. (2008). Microfibre-nanowire hybrid structure for energy scavenging. Nature, 451(14), 809–813.Google Scholar
  11. 11.
    Wang, Z. L., Wang, X., Song, J., Liu, J., & Gao, Y. (2008). Piezoelectric nanogenerators for self-powered nanodevices. Pervasive Computing, IEEE, 7(1), 49–55.Google Scholar
  12. 12.
    Imam, S. A., Sabri, S., & Szkopek, T. (2010). Low-frequency noise and hysteresis in graphene field-effect transistors on oxide S.A. Micro and Nano Letters, IET, 5(1), 37–41.Google Scholar
  13. 13.
    Geim, A. K., & Novoselov, K. S. (2011). The rise of graphene. Nature, 6(3), 183–191.CrossRefGoogle Scholar
  14. 14.
    Brownson, D. A. C., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy production and storage applications. Journal of Power Sources, 196, 4873–4885.Google Scholar
  15. 15.
    Grande, L., Chundi, V. T., Wei, D., Bower, C., Andrew, P., & Ryhänen, T. (2011). Graphene for energy harvesting/storage devices and printed electronics. Particuology, 10, 1–8.Google Scholar
  16. 16.
    Pumera, M. (2011). Graphene in biosensing. Materials Today, 14(7–8), 308–315.CrossRefGoogle Scholar
  17. 17.
    Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56, 1178–1271.CrossRefGoogle Scholar
  18. 18.
    López-Suárez, M., Rurali, R., Gammaitoni, L., & Abadal, G. (2011). Nanostructured graphene for energy harvesting. Physical Review B, 84(161401), 1–5.Google Scholar
  19. 19.
    Kwon, J., Sharma, B. K., & Ahn, J. -H. (2013). Graphene based nanogenerator for energy harvesting. Japanese Journal of Applied Physics, 52(6S) 06GA02.Google Scholar
  20. 20.
    Dhiman, P., Yavari, F., Mi, X., Gullapalli, H., Shi, Y., Ajayan, P. M., et al. (2011). Harvesting energy from water flow over graphene. Nano Letters, 11(8), 3123–3127.CrossRefGoogle Scholar
  21. 21.
    Que, R., Shao, Q., Li, Q., Shao, M., Cai, S., Wang, S., et al. (2012). Flexible nanogenerators based on graphene oxide films for acoustic energy harvesting. Angewandte Chemie International Edition, 51(22), 5418–5422.Google Scholar
  22. 22.
    El Aroudi, A., Lopez-Suarez, M., Rurali, R., Alarcon, E., & Abadal, G. (2013). Nonlinear dynamics in a nanostructured graphene device for energy harvesting applications. In IEEE international symposium on circuits and systems, 2013, ISCAS 2013, May 2013, Beijing, China (pp. 2727–2730).Google Scholar
  23. 23.
    El Aroudi, A., Lopez-Suarez, M., Rurali, R., Alarcon, E., & Abadal, G. (2014). Nonlinear dynamics of an ambient noise driven array of coupled graphene nanostructured devices for energy harvesting. In A: International conference on structural dynamics and diagnosis. MATEC web of conferences (Vol. 16); CSNDD 2014: International conference on structural nonlinear dynamics and diagnosis. Agadir: EDP Sciences (pp. 01001-1–01001-4).Google Scholar
  24. 24.
    Soler, J. M., Artacho, E., Gale, J. D., Garcıa, A., Junquera, J., Ordejon, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745.Google Scholar
  25. 25.
    Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 94(16), 164102-1–164102-3.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. El Aroudi
    • 1
    Email author
  • M. López-Suárez
    • 2
  • E. Alarcón
    • 3
  • R. Rurali
    • 4
  • G. Abadal
    • 2
  1. 1.University Rovira i VirgiliTarragonaSpain
  2. 2.Universitat Autónoma de BarcelonaBarcelonaSpain
  3. 3.Universitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de BellaterraBarcelonaSpain

Personalised recommendations