Advertisement

Nonlinear Structural Mechanics of Micro-and Nanosystems

  • Hassen M. OuakadEmail author
Chapter

Abstract

Recently, the use of micro- and nanoelectromechanical systems (MEMS and NEMS) has seen a dramatic increase observed especially with the increasing interest of wide spectrum of technologies such as mass/gas sensors, filters, switches, and resonators. Adding to that, their simple fabrication process makes them easy to be fabricated at a low cost and hence commercialized easily. The basic structures that are used numerously to build MEMS and NEMS devices are principally made of cantilever or clamped-clamped beams. For example, they are employed in mass sensors for bio and gas sensing, as switching elements in RF microswitches and optical fibers, and probe elements in atomic force microscope (AFM). Also, they form a basic element in nanoscale devices such as carbon nanotubes (CNTs).

References

  1. 1.
    Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.CrossRefGoogle Scholar
  2. 2.
    Craighead, H. G. (2000). Nanoelectromechanical systems. Science, 290, 1532–1535.CrossRefGoogle Scholar
  3. 3.
    Postma, H., Kozinsky, I., Husain, A., & Roukes, M. (2005). Dynamic range of nanotube- and nanowire-based electromechanical systems. Applied Physics Letters, 86, 223105(1–3).Google Scholar
  4. 4.
    Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T. A., & McEuen, P. L. (2004). A tunable carbon nanotubes electromechanical oscillator. Nature, 431, 284–287.CrossRefGoogle Scholar
  5. 5.
    Sazonova, V. A. (2006). A tunable carbon nanotube resonator, Ph.D. Thesis, Department of Physics, Cornell University.Google Scholar
  6. 6.
    Üstünel, H., Roundy, D., & Arias, T. A. (2005). Modeling a suspended nanotube oscillator. Nano Letter, 5, 523–526.CrossRefGoogle Scholar
  7. 7.
    Gibson, R. F., Ayorinde, E. O., & Wen, Y. F. (2007). Vibrations of carbon nanotubes and their composites: A review. Composites Science and Technology, 67, 1–28.CrossRefGoogle Scholar
  8. 8.
    Gao, R. P., Wang, Z. L., Bai, Z. G., de Heer, W. A., Dai, L. M., & Gao, M. (2000). Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Physical Review Letters, 85, 622–625.CrossRefGoogle Scholar
  9. 9.
    Wang, Z. L., Gao, R. P., Poncharal, P., de Heer, W. A., Dai, Z. R., & Pan, Z. W. (2001). Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science and Engineering C, 16, 3–10.CrossRefGoogle Scholar
  10. 10.
    Dequesnes, M., Rotkin, S. V., & Aluru, N. R. (2002). Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology, 13, 120–131.CrossRefGoogle Scholar
  11. 11.
    Sapmaz, S., Blanter, Y. M., Gurevich, L., & van der Zant, H. S. J. (2003). Carbon nanotubes as nanoelectromechanical systems. Physical Review B, 67, 14–2354.CrossRefGoogle Scholar
  12. 12.
    Dequesnes, M., Tang, S., & Aluru, N. R. (2004). Static and dynamic analysis of carbon nanotube-based switches. Journal of Engineering Materials and Technology, 126, 230–237.CrossRefGoogle Scholar
  13. 13.
    Lefèvre, R., Goffman, M. F., Derycke, V., Miko, C., Forró, L., Bourgoin, J. P., et al. (2005). Scaling law in carbon nanotube electromechanical devices. Physical Review Letters, 95, 55–59.CrossRefGoogle Scholar
  14. 14.
    Ke, C. H., & Espinosa, H. D. (2005). Numerical analysis of nanotube-based NEMS devices—Part I: Electrostatic charge distribution on multiwalled nanotubes. Journal of Applied Mechanics, 72, 721–725.CrossRefzbMATHGoogle Scholar
  15. 15.
    Pugno, N., Ke, C. H., & Espinosa, H. D. (2005). Analysis of doubly clamped nanotube devices in the finite deformation regime. Journal of Applied Mechanics, 72, 445–449.CrossRefzbMATHGoogle Scholar
  16. 16.
    Witkamp, B., Poot, M., & van der Zant, H. S. J. (2006). Bending-mode vibration of a suspended nanotube resonator. Nano Letter, 6, 2904–2908.CrossRefGoogle Scholar
  17. 17.
    Poot, M., Witkamp, B., Otte, M. A., & van der Zant, H. S. J. (2007). Modeling suspended carbon nanotube resonators. Physica Status Solidus (b), 244, 4252–4256.CrossRefGoogle Scholar
  18. 18.
    Peng, H. B., Chang, C. W., Aloni, S., Yuzvinsky, T. D., & Zettl, A. (2007). Microwave electromechanical resonator consisting of clamped carbon nanotubes in an abacus arrangement. Physical Review B, 76, 354–359.Google Scholar
  19. 19.
    Srivastava, D., & Barnard, S. T. (1997). Molecular dynamics simulation of large-scale carbon nanotubes on a shared-memory architecture. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing. San Jose, CA.Google Scholar
  20. 20.
    Sears, A. T. (2006). Carbon nanotube mechanics: continuum model development from molecular mechanics virtual experiments. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  21. 21.
    Hwang, H. J., & Lee, J. H. (2006). Molecular dynamics modeling of eectromechanical nanotube memory. Journal of the Korean Physical Society, 49(3), 1136–1142.MathSciNetGoogle Scholar
  22. 22.
    Brodka, A., Kołoczek, J., Burian, A., Dore, J. C., Hannon, A. C., & Fonseca, A. (2006). Molecular dynamics simulation of carbon nanotube structure. Journal of Molecular Structure, 792–793, 78–81.CrossRefGoogle Scholar
  23. 23.
    Kang, J. W., Hwang, H. J., & Jiang, Q. (2006). A molecular dynamics study on oscillation of a carbon nanotube inside an encapsulating Boron-Nitride nanotube. Journal of Computational and Theoretical Nanoscience, 3(6), 880–884(1–5).Google Scholar
  24. 24.
    Kang, J. W., Kang, D. Y., Choi, Y. G., Lee, S., & Hwang, H. J. (2009). Molecular dynamics study of tunable double-walled carbon nanotube oscillator. Journal of Computational and Theoretical Nanoscience, 6(7), 1580–1584(1–5).Google Scholar
  25. 25.
    Kang, J. W., Won, C. S., Ryu, G. H., & Choi, Y. G. (2009). Molecular dynamics study on resonance characteristics of gigahertz carbon nanotube motor. Journal of Computational and Theoretical Nanoscience, 6(1), 178–186(1–9).Google Scholar
  26. 26.
    Greaney, P. A., & Grossman, J. C. (2007). Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes. Physical Review Letters, 98, 125503–125507.CrossRefGoogle Scholar
  27. 27.
    Lu, J.-M., Wang, Y.-C., Chang, J.-G., Su, M.-H., & Hwang, C.-C. (2008). Molecular-dynamic investigation of buckling of double-walled carbon nanotubes under uniaxial compression. Journal of the Physical Society of Japan, 77(4), 044603(1–7).Google Scholar
  28. 28.
    Shayan-Amin, S., Dalir, H., & Farshidianfar, A. (2009). Molecular dynamics simulation of double-walled carbon nanotube vibrations: comparison with continuum elastic theories. Journal of Mechanics, 25(4).Google Scholar
  29. 29.
    Wang, X. Y., & Wang, X. (2004). Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment. Composites Part B, 35, 79–86.Google Scholar
  30. 30.
    Lau, K. T., Chipara, M., Ling, H., & Hui, D. (2004). On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites Part B, 35, 95–101.Google Scholar
  31. 31.
    Garg, M. (2005). Mechanics of deformation of carbon nanotubes. MS thesis, Department of Mechanical Engineering, Massachuset Institute of Technology.Google Scholar
  32. 32.
    Yakobson, B., Brabec, C., & Bernholc, J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters, 76, 2511–2514.CrossRefGoogle Scholar
  33. 33.
    Harik, V. M. (2002). Mechanics of carbon nanotubes: applicability of the continuum-beam models. Computational Materials Science, 24, 328–342.CrossRefGoogle Scholar
  34. 34.
    Harik, V. M. (2001). Ranges of applicability of the continuum beam model in the mechanics of carbon nanotubes and nanorods. Solid State Communication, 120, 331–335.CrossRefGoogle Scholar
  35. 35.
    Liu, J. Z., Zheng, Q., & Jiang, Q. (2001). Effect of a rippling mode on resonances of carbon nanotubes. Physical Review Letters, 86, 43–46.CrossRefGoogle Scholar
  36. 36.
    Pantano, A., Parks, D. M., & Boyce, M. C. (2004). Mechanics of deformation of single- and multi-wall carbon nanotubes. Journal of the Mechanics and Physics of Solids, 52, 789–821.CrossRefzbMATHGoogle Scholar
  37. 37.
    Arroyo, M. (2004). Continuum mechanics and carbon nanotubes. In Proceedings of the XXI ICTAM. Warsaw, Poland.Google Scholar
  38. 38.
    Arroyo, M., & Belytschko, T. (2005). Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica, 40(4–6), 455–469.Google Scholar
  39. 39.
    Wang, L., Hu, H., & Guo, W. (2010). Thermal vibration of carbon nanotubes predicted by beam models and molecular dynamics. In Proceedings of the Royal Society A, Mathematical, Physical, and Engineering Sciences, rspa.2009.0609v1-rspa20090609.Google Scholar
  40. 40.
    Sears, A., & Batra, R. C. (2010). Carbon nanotube mechanics: molecular simulations and continuum models for carbon nanotubes. In Virginia Space Grant Consortium 2010 Student Research Conference, Department of Engineering Science and Mechanics: Virginia Polytechnic Institute and State University Blacksburg.Google Scholar
  41. 41.
    Conley, W. G., Raman, A., Krousgrill, C. M., & Mohammadi, S. (2008). Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators. Nano Letters, 8, 1590–1595.CrossRefGoogle Scholar
  42. 42.
    Elishakoff, I., & Pentaras, D. (2009). Fundamental natural frequencies of double-walled carbon nanotubes. Journal of Sound and Vibration, 322, 652–664.CrossRefGoogle Scholar
  43. 43.
    Elishakoff, I., & Pentaras, D. (2009). Natural frequencies of carbon nanotubes based on simplified Bresse-Timoshenko theory. Journal of Computational and Theoritical Nanoscience, 6, 1527–1531.CrossRefGoogle Scholar
  44. 44.
    Georgantzinos, S. K., Giannopoulos, G. I., & Anifantis, N. K. (2009). An efficient numerical model for vibration analysis of single-walled carbon nanotubes. Journal of Computational Mechanics, 43, 731–741.CrossRefzbMATHGoogle Scholar
  45. 45.
    Hawwa, M. A., & Al-Qahtani, H. M. (2010). Nonlinear oscillations of a double-walled carbon nanotube. Computational Material Science, 48, 140–143.CrossRefGoogle Scholar
  46. 46.
    Ke, C. H., & Espinosa, H. D. (2006). In situ electron microscopy electromechanical characterization of a bistable NEMS device. Small, 2(12), 1484–1489.CrossRefGoogle Scholar
  47. 47.
    Ke, C. H., Espinosa, H. D., & Pugno, N. (2005). Numerical analysis of nanotube-based NEMS devices—Part II: Role of finite kinematics, stretching and charge concentrations. Journal of Applied Mechanics, 72, 726–731.CrossRefzbMATHGoogle Scholar
  48. 48.
    Ke, C. H., Pugno, N., Peng, B., & Espinosa, H. D. (2005). Experiments and modeling of carbon nanotube-based NEMS devices. Journal of the Mechanics and Physics of solids, 53, 1314–1333.CrossRefzbMATHGoogle Scholar
  49. 49.
    Isacsson, A., Kinaret, J. M., & Kaunisto, R. (2007) Nonlinear resonance in a three-terminal carbon nanotube resonator. Nanotechnology, 18, 95203(1–8).Google Scholar
  50. 50.
    Isacsson, A., & Kinaret, J. M. (2009) Parametric resonances in electrostatically interacting carbon nanotube arrays. Physical Review B, 79, 165418(1–11).Google Scholar
  51. 51.
    Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N., & Treacy, M. M. J. (1998). Young’s modulus of single-walled nanotubes. Physical Review B, 58, 14013–14019.CrossRefGoogle Scholar
  52. 52.
    Kim, P., & Lieber, C. M. (1999). Nanotube nanotweezers. Science Magazine, 286(5447), 2148–2150.Google Scholar
  53. 53.
    Poncharal, P., Wang, Z. L., Ugarte, D., & de Heer, W. A. (1999). Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 283, 1513–1516.CrossRefGoogle Scholar
  54. 54.
    Babic, B., Furer, J., Sahoo, S., Farhangfar, S., & Schonenberger, C. (2003). Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes. Nano Letters, 3, 1577–1580.CrossRefGoogle Scholar
  55. 55.
    Dujardin, E., Derycke, V., Goffman, M. F., Lefèvre, R., & Bourgoin, J. P. (2005). Self-assembled switches based on electroactuated multiwalled nanotubes. Applied Physics Letters, 87, 1931–1938.CrossRefGoogle Scholar
  56. 56.
    Rabieirad, L., Kim, S., Shim, M., & Mohammadi, S. (2005). Doubly clamped single-walled carbon nanotube resonators operating in MHz frequencies. In Proceedings of 2005 5th IEEE Conference on Nanotechnology. Nagoya, Japan.Google Scholar
  57. 57.
    Bak, J. H., Kim, Y. D., Hong, S. S., Lee, B. Y., Lee, S. R., Jang, J. H., et al. (2008). High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates. Nature Materials, 7, 459–463.CrossRefGoogle Scholar
  58. 58.
    San Paulo, A., Black, J, García-Sanchez, D., Esplandiu, M. J., Aguasca, A., Bokor, J., F. Perez-Murano, F., & Bachtold, A. (2008). Mechanical detection and mode shape imaging of vibrational modes of micro and nanomechanical resonators by dynamic force microscopy. Journal of Physics: Conference Series, 100, 052009(1–5).Google Scholar
  59. 59.
    Amlani, I., Lee, K. F., Deng, J., & Wong, H. S. P. (2009). Measuring frequency response of a single-walled carbon nanotube common-sourcea. IEEE Transactions on Nanotechnology, 8, 226–233.CrossRefGoogle Scholar
  60. 60.
    Ren, L., Pint, C. L., Booshehri, L. G., Rice, W. D., Wang, X., Hilton, D. J., et al. (2009). Carbon nanotube terahertz polarizer. Nano Letters, 9, 2610–2613.CrossRefGoogle Scholar
  61. 61.
    Kienle, D., & Léonard, F. (2000). Terahertz response of carbon nanotube transistors. Physical Review Letters, 103, 026601(1–4).Google Scholar
  62. 62.
    Lu, R. F., Lu, Y. P., Lee, S. Y., Ha, K. L., & Deng, W. Q. (2009). Terahertz response in single-walled carbon nanotube transistor: A real-time quantum dynamics simulation. Nanotechnology, 20, 505401(1–4).Google Scholar
  63. 63.
    Kang, J. W., Lee, J. H., Lee, H. J., & Hwang, H. J. (2005). A study on carbon nanotube bridge as a electromechanical memory device. Physica E, 27, 332–340.CrossRefGoogle Scholar
  64. 64.
    Garcia-Sanchez, D., San Paulo, A., Esplandiu, M. J., Perez-Murano, F., Forrò, L., Aguasca, A., & Bachtold, A. (2007). Mechanical detection of carbon nanotube resonator vibrations. Physical Review Letters, 99, 085501(1–4).Google Scholar
  65. 65.
    Mayoof, F. N., & Hawwa, M. A. (2009). Chaotic behavior of a curved carbon nanotube under harmonic excitation. Journal of Chaos, Solitons & Fractals, 42, 1860–1867.CrossRefGoogle Scholar
  66. 66.
    Meirovitch, L. (2001). Fundamentals of vibrations. New York: McGraw Hill.Google Scholar
  67. 67.
    Rao, S. S. (2004). Mechanical vibrations (4th ed.). New Jersey: Prentice Hall.Google Scholar
  68. 68.
    Dawe, D. J. (1971). The Ttransverse vibartion of shallow arches using the displacement method. International Journal of Mechanical Sciences, Pergamon Press, 13, 713–720.Google Scholar
  69. 69.
    Nayfeh, A. H. (2000). Nonlinear interactions. New-York, United-States: Wiley Interscience.zbMATHGoogle Scholar
  70. 70.
    Itô, K. (Ed.). (1993). Methods other than difference methods. §303I in encyclopedic dictionary of mathematics (2nd ed.) (vol. 2, pp. 1139–1980). Cambridge, MA: MIT Press.Google Scholar
  71. 71.
    Ouakad, H. M. (2013). The response of a micro-electro-mechanical system (MEMS) cantilever-paddle gas sensor to mechanical shock loads. Journal of Vibration and Control, in press. doi: 10.1177/1077546313514763.
  72. 72.
    Younis, M. I., Abdel-Rahman, E. M., & Nayfeh, A. H. (2003). A Reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 12, 672–680.CrossRefGoogle Scholar
  73. 73.
    Reddy, J. N. (2002). Energy principles and variational methods in applied mechanics. New York: Wiley and Sons.Google Scholar
  74. 74.
    Hayt, W. H., & Buck, J. A. (2001). Engineering electromagnetics. New York, United-States: McGraw-Hill.Google Scholar
  75. 75.
    Nathanson, H. C., & Wickstrom, R. A. (1965). A resonant gate silicon surface transistor with high Q bandpass properties. IEEE Applied Physics Letters, 7, 84–86.CrossRefGoogle Scholar
  76. 76.
    Nathanson, H. C., Newell, W. E., Wickstrom, R. A., & Davis, J. R. (1967). The Resonant gate transistor. IEEE Transactions on Electron Devices, 14, 117–133.CrossRefGoogle Scholar
  77. 77.
    Newell, W. (1968). Miniaturization of tuning forks. Science, 161(3848), 1320–1326.CrossRefGoogle Scholar
  78. 78.
    Abdel-Rahman, E. M., Younis, M. I., & Nayfeh, A. H. (2002). Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering, 12, 759–766.CrossRefGoogle Scholar
  79. 79.
    Younis, M. I., & Nayfeh, A. H. (2003). A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31, 91–117.CrossRefzbMATHGoogle Scholar
  80. 80.
    Nayfeh, A. H., & Younis, M. I. (2005). Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 15, 1840–1847.CrossRefGoogle Scholar
  81. 81.
    Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2005). Reduced-order models for MEMS applications. Nonlinear Dynamics, 41, 211–236.MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Krylov, S., & Maimon, R. (2004). Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. Journal of Vibration and Acoustics, 126, 332–342.CrossRefGoogle Scholar
  83. 83.
    Elata, D., & Bamberger, H. (2006). On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources. Journal of Microelectromechanical Systems, 15, 131–140.CrossRefGoogle Scholar
  84. 84.
    Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2007). Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dynamics, 48, 153–163.CrossRefzbMATHGoogle Scholar
  85. 85.
    Thompson, J. M. T., & Stewart, H. B. (2001). Nonlinear dynamics and chaos. New York, United-States: Wiley.zbMATHGoogle Scholar
  86. 86.
    Alsaleem, F. M., Younis, M. I., & Ouakad, H. M. (2009). On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. Journal of Micromechanics and Microengineering, 19(4), 045013.CrossRefGoogle Scholar
  87. 87.
    Wolfram, S. (2000). The Mathematica Book (Vol. 100, pp. 7237–61820). New York, NY, USA: Cambridge University Press and Wolfram Research Inc.Google Scholar
  88. 88.
    Noor, A. K., & Nemeth, M. P. (1980). Micropolar beam models for lattice grids with rigid joints. Computer Methods in Applied Mechanics and Engineering, 21(2), 249–263.CrossRefzbMATHGoogle Scholar
  89. 89.
    Harris, P. J. F. (1999). Carbon nanotubes and related structures. Cambridge, MA, United-States: Cambridge University Press.CrossRefGoogle Scholar
  90. 90.
    Yu, M. F. (2004). Fundamental mechanical properties of carbon nanotubes: current understanding and the related experimental studies. Journal of Engineering Materials and Technology, 126, 271–278.CrossRefGoogle Scholar
  91. 91.
    Akita, S., Nakayama, Y., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., et al. (2001). Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Applied Physics Letters, 79(11), 1691–1694.CrossRefGoogle Scholar
  92. 92.
    Ouakad, H. M., & Younis, M. I. (2010). The dynamic behavior of MEMS arch resonators actuated electrically. International Journal of Non-Linear Mechanics, 45(7), 704–713.CrossRefGoogle Scholar
  93. 93.
    Ouakad, H. M. (2014). Static response and natural frequencies of microbeams actuated by out-of-plane electrostatic fringing-fields. International Journal of Non-Linear Mechanics, 63, 39–48.CrossRefGoogle Scholar
  94. 94.
    Abdel-Rahman, E. M., Emam, S. A., & Nayfeh, A. H. (2003). A generalized model of electrically actuated microbeam-based MEMS devices. In Proceedings of the DETC.03 ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference. Chicago, Illinois, USA.Google Scholar
  95. 95.
    Nayfeh, A. H., & Pai, P. F. (2004). Linear and nonlinear structural mechanics. New York, United-States: Wiley.CrossRefzbMATHGoogle Scholar
  96. 96.
    Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics. New York: Wiley.CrossRefzbMATHGoogle Scholar
  97. 97.
    Kuttler, J. R., & Sigillito, V. G. (1981). On curve veering. Journal of Sound and Vibration, 75, 585–588.CrossRefGoogle Scholar
  98. 98.
    Perkins, N. C., & Mote, C. D, Jr. (1986). Comments on curve veering in eigenvalue problems. Journal of Sound and Vibration, 106, 451–463.CrossRefGoogle Scholar
  99. 99.
    Arafat, H. N., & Nayfeh, A. H. (2003). Non-linear responses of suspended cables to primary resonance excitations. Journal of Sound and Vibration, 266, 325–354.CrossRefGoogle Scholar
  100. 100.
    Rega, G. (2004). Nonlinear vibrations of suspended cables-Part I: Modeling and analysis. Journal of Applied Mechanics Review, 57, 443–478.CrossRefGoogle Scholar
  101. 101.
    Lin, J., & Parker, R. G. (2001). Natural frequency veering in planetary gears. Mechanics of Structures and Machines, 29, 411–429.Google Scholar
  102. 102.
    Nayfeh, A. H. (1981). Introduction to perturbation techniques. New York, United-States: Wiley Interscience.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia

Personalised recommendations