Transducers for Energy Harvesting

  • E. Blokhina
  • A. El Aroudi
  • D. GalaykoEmail author


The aim of this chapter is to briefly explain fundamental concepts related to the physics of electromechanical transducers used for vibration energy harvesting. We present only a concise discussion on this problem and refer a reader to the literature cited in this chapter for a more detailed study of this matter. Transducers are capital for the energy harvesting process: this device takes power from one domain (for instance, the mechanical domain) and converts it to another domain (for instance, the electrical domain). In this chapter, we discuss the two most suitable transducer for micro- and nanoscale energy harvesting—piezoelectric and electrostatic transducers.


Energy Harvester Piezoelectric Layer Piezoelectric Energy Harvesting Parallel Plate Capacitor Vibration Energy Harvester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., & Bourouina, T. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3), 035,001.Google Scholar
  2. 2.
    Curie, J., & Curie, P. (1880). Development, via compression, of electric polarization in hemihedral crystals with inclined faces. Bulletin de la Societe de Minerologique de France, 3, 90–93.Google Scholar
  3. 3.
    Curie, J., & Curie, P. (1881). Contractions and expansions produced by voltages in hemihedral crystals with inclined faces. Comptes Rendus, 93, 1137–1140.Google Scholar
  4. 4.
    El Aroudi, A., Lopez-Suarez, M., Alarcon, E., Rurali, R. & Abadal, G. (2013). Nonlinear dynamics in a graphene nanostructured device for energy harvesting. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2727–2730.Google Scholar
  5. 5.
    Erturk, A., & Inman, D. (2011). Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. Journal of Sound and Vibration, 330(10), 2339–2353.CrossRefGoogle Scholar
  6. 6.
    Fedder, G. K. (1994). Simulation of microelectromechanical systems. Ph.D. thesis, University of California at Berkeley.Google Scholar
  7. 7.
    Galayko, D., Kaiser, A., Legrand, B., Buchaillot, L., Collard, D., & Combi, C. (2005). Tunable passband t-filter with electrostatically-driven polysilicon micromechanical resonators. Sensors and Actuators A: Physical, 117(1), 115–120.CrossRefGoogle Scholar
  8. 8.
    Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 94, 164,102.Google Scholar
  9. 9.
    Gammaitoni, L., Travasso, F., Orfei, F., Vocca, H., & Neri, I. (2011). Vibration energy harvesting: Linear and nonlinear oscillator approaches. INTECH Open Access Publisher.Google Scholar
  10. 10.
    López-Suárez, M., Rurali, R., Gammaitoni, L., & Abadal, G. (2011). Nanostructured graphene for energy harvesting. Physical Review B, 84(16), 161,401.Google Scholar
  11. 11.
    Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., & Lang, J. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76.Google Scholar
  12. 12.
    Moon, F., & Holmes, P. J. (1979). A magnetoelastic strange attractor. Journal of Sound and Vibration, 65(2), 275–296.CrossRefzbMATHGoogle Scholar
  13. 13.
    Nuffer, J., & Bein, T. (2006). Applications of piezoelectric materials in transportation industry. In: Global Symposium on Innovative Solutions for the Advancement of the Transport Industry, San Sebastian, Spain.Google Scholar
  14. 14.
    Ramlan, R., Brennan, M., Mace, B., & Kovacic, I. (2010). Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dynamics, 59(4), 545–558.CrossRefzbMATHGoogle Scholar
  15. 15.
    Riley, K., Hobson, P., & Bence, S. (2006). Mathematical Methods for Physics and Engineering: A Comprehensive Guide. Cambridge University Press.
  16. 16.
    Senturia, S. D. (2001). Microsystem design, vol. 3. Kluwer academic publishers Boston.Google Scholar
  17. 17.
    Smith, W. A. (1986). Composite piezoelectric materials for medical ultrasonic imaging transducers—a review. In Sixth IEEE International Symposium on on Applications of Ferroelectrics, pp. 249–256.Google Scholar
  18. 18.
    Sodano, H. A., Inman, D. J., & Park, G. (2004). A review of power harvesting from vibration using piezoelectric materials. Shock and Vibration Digest, 36(3), 197–206.CrossRefGoogle Scholar
  19. 19.
    Tang, L., Yang, Y., & Soh, C. K. (2010). Toward broadband vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 21(18), 1867–1897.CrossRefGoogle Scholar
  20. 20.
    Toh, T. T., Bansal, A., Hong, G., Mitcheson, P. D., Holmes, A. S., & Yeatman, E. M. (2007). Energy harvesting from rotating structures. Technical Digest PowerMEMS 2007, Freiburg, Germany, 28–29 November 2007 pp. 327–330.Google Scholar
  21. 21.
    Trigona, C., Dumas, N., Latorre, L., Andò, B., Baglio, S., & Nouet, P. (2011). Exploiting benefits of a periodically-forced nonlinear oscillator for energy harvesting from ambient vibrations. Procedia engineering, 25, 819–822.CrossRefGoogle Scholar
  22. 22.
    Vocca, H., Neri, I., Travasso, F., & Gammaitoni, L. (2012). Kinetic energy harvesting with bistable oscillators. Applied Energy, 97, 771–776.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University College DublinDublinIreland
  2. 2.University Rovira i VirgiliTarragonaSpain
  3. 3.UMPC — Sorbonne UniversitiesParisFrance

Personalised recommendations