Advertisement

Nonlinear Conditioning Circuits for Piezoelectric Energy Harvesters

  • Adrien BadelEmail author
  • Elie Lefeuvre
Chapter

Abstract

Design and analysis of piezoelectric vibration energy harvesters is a complex multi-physics problem related to mechanics, materials science, and electronics.

References

  1. 1.
    Williams, C. B., & Yates, R. B. (1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical, 52(1), 8–11.CrossRefGoogle Scholar
  2. 2.
    Arroyo, E., Badel, A., Formosa, F., Wu, Y. P., & Qiu, J. (2012). Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments. Sensors and Actuators A: Physical, 183, 148–156.CrossRefGoogle Scholar
  3. 3.
    Krimholtz, R., Leedom, D. A., & Matthaei, G. L. (1970). New equivalent circuits for elementary piezoelectric transducers. Electronics Letters, 6(13), 398–399.CrossRefGoogle Scholar
  4. 4.
    Tilmans, H. A. C. (1996). Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. Journal of Micromechanics and Microengineering, 6(1), 157–176.CrossRefGoogle Scholar
  5. 5.
    Yang, Y., & Tang, L. (2009). Equivalent circuit modeling of piezoelectric energy harvesters. JIMSS, 20(18), 2223–2235.Google Scholar
  6. 6.
    Renno, J. M., Daqaq, M. F., & Inman, D. J. (2009). On the optimal energy harvesting from a vibration source. JSV, 320(1), 386–405.CrossRefGoogle Scholar
  7. 7.
    Guyomar, D., Badel, A., Lefeuvre, E., & Richard, C. (2005). Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(4), 584–595.CrossRefGoogle Scholar
  8. 8.
    Li, Y., Richard, C. (2014). Piezogenerator impedance matching using Mason equivalent circuit for harvester identification. In Presented at the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (Vol. 9057, p. 90572I).Google Scholar
  9. 9.
    Erickson, R. W., & Maksimovic, D. (2001). Fundamentals of power electronics. US: Springer.CrossRefGoogle Scholar
  10. 10.
    Lefeuvre, E., Sebald, G., Guyomar, D., & Lallart, M. (2009). Materials, structures and power interfaces for efficient piezoelectric energy harvesting. Journal of ....Google Scholar
  11. 11.
    Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512.CrossRefGoogle Scholar
  12. 12.
    Ottman, G. K., Hofmann, H. F., Bhatt, A. C., & Lesieutre, G. A. (2002). Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics, 17(5), 669–676.CrossRefGoogle Scholar
  13. 13.
    Ottman, G. K., Hofmann, H. F., & Lesieutre, G. A. (2003). Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 18(2), 696–703.CrossRefGoogle Scholar
  14. 14.
    Lefeuvre, E., Audigier, D., Richard, C., & Guyomar, D. (2007). Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Transactions on Power Electronics, 22(5), 2018–2025.CrossRefGoogle Scholar
  15. 15.
    Yi, J., Su, F., Lam, Y.-H., Ki, W.-H., & Tsui, C.-Y. (2008). An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting. In Presented at the 2008 IEEE International Symposium on Circuits and Systems—ISCAS 2008 (pp. 2570–2573).Google Scholar
  16. 16.
    Kong, N., & Ha, D. S. (2012). Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Transactions on Power Electronics, 27(5), 2298–2308.CrossRefGoogle Scholar
  17. 17.
    Shim, M., Kim, J., Jung, J., & Kim, C. (2014). Self-powered 30 \(\mu \)W-to-10 mW piezoelectric energy-harvesting system with 9.09ms/V maximum power point tracking time. In 2014 IEEE International Solid- State Circuits Conference (ISSCC) (pp. 406–407).Google Scholar
  18. 18.
    Bandyopadhyay, S., Mercier, P. P., Lysaght, A. C., Stankovic, K. M., & Chandrakasan, A. P. (2014). A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants. IEEE Journal of Solid-state Circuits, 49(12), 2812–2824.CrossRefGoogle Scholar
  19. 19.
    Richard, C., Guyomar, D., Audigier, D., & Ching, G. (1999). Semi-passive damping using continuous switching of a piezoelectric device. In Presented at the 1999 Symposium on Smart Structures and Materials, 3672, 104–111.Google Scholar
  20. 20.
    Badel, A. (2005). Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion. JIMSS, 16(10), 889–901.Google Scholar
  21. 21.
    Lefeuvre, E., Badel, A., Richard, C., & Guyomar, D. (2004). High-performance piezoelectric vibration energy reclamation. Smart Structures and Materials, 5390, 379–387.Google Scholar
  22. 22.
    Shu, Y. C., Lien, I. C., & Wu, W. J. (2007). An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16(6), 2253–2264.CrossRefGoogle Scholar
  23. 23.
    Lefeuvre, E., Badel, A., Richard, C., Petit, L., & Guyomar, D. (2006). A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators A: Physical, 126(2), 405–416.CrossRefGoogle Scholar
  24. 24.
    Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B., & Wel, T. R. (2001). The energy harvesting Eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26(4), 539–547.CrossRefGoogle Scholar
  25. 25.
    Badel, A., Benayad, A., Lefeuvre, E., Lebrun, L., Richard, C., & Guyomar, D. (2006). Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(4), 673–684.Google Scholar
  26. 26.
    Lefeuvre, E. (2005). Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. JIMSS, 16(10), 865–876.Google Scholar
  27. 27.
    Makihara, K., Onoda, J., & Miyakawa, T. (2006). Low energy dissipation electric circuit for energy harvesting. Smart Materials and Structures, 15(5), 1493–1498.CrossRefGoogle Scholar
  28. 28.
    Lallart, M., & Guyomar, D. (May 2008). An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials andStructures, 17(3), 035030–9.Google Scholar
  29. 29.
    Garbuio, L., Lallart, M., Guyomar, D., Richard, C., & Audigier, D. (2009). Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique. IEEE Transactions on Industrial Electronics, 56(4), 1048–1056.CrossRefGoogle Scholar
  30. 30.
    Elliott, A. D. T., & Mitcheson, P. D. (2012). Implementation of a single supply pre-biasing circuit for piezoelectric energy harvesters. Procedia Engineering, 47, 1311–1314.CrossRefGoogle Scholar
  31. 31.
    Lallart, M., Garbuio, L., Petit, L., Richard, C., & Guyomar, D. (2008). Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(10), 2119–2130.CrossRefGoogle Scholar
  32. 32.
    Shen, H., Qiu, J., Ji, H., Zhu, K., & Balsi, M. (2010). Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 19(11), 115017.CrossRefGoogle Scholar
  33. 33.
    Wu, W. J., Wickenheiser, A. M., Reissman, T., & Garcia, E. (2009). Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers. Smart Materials and Structures, 18(5), 055012–15.Google Scholar
  34. 34.
    Dicken, J., Mitcheson, P. D., & Stoianov, I. (2009). Increased power output from piezoelectric energy harvesters by pre-biasing. In Presented at the PowerMEMS 2011.Google Scholar
  35. 35.
    Liu, Y., Tian, G., Wang, Y., Lin, J., Zhang, Q. H. F., & Hofmann (2009). Active piezoelectric energy harvesting: general principle and experimental demonstration. JIMSS, 20(5), 575–585.Google Scholar
  36. 36.
    Deterre, M., Lefeuvre, E., & Dufour-Gergam, E. (2012). An active piezoelectric energy extraction method for pressure energy harvesting. Smart Materials and Structures, 21(8), 085004.CrossRefGoogle Scholar
  37. 37.
    Wu, Y. P., Badel, A., Formosa, F., Liu, W. Q., & Agbossou, A. E. (2013). Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. JIMSS, 24(12), 1445–1458.Google Scholar
  38. 38.
    Wu, Y. P., Badel, A., Formosa, F., Liu, W. Q., & Agbossou, A. (2014). Self-powered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting. JIMSS, 25(17), 2165–2176.Google Scholar
  39. 39.
    Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 94(16), 164102.CrossRefGoogle Scholar
  40. 40.
    Eichhorn, C., Tchagsim, R., Wilhelm, N., & Woias, P. (2011). A smart and self-sufficient frequency tunable vibration energy harvester. Journal of Micromechanics and Microengineering, 21(10), 104003.CrossRefGoogle Scholar
  41. 41.
    Ahmed Seddik, B., Despesse, & Defay, E. (2012). Autonomous wideband mechanical energy harvester. In Presented at the IEEE International Symposium on Industrial Electronics ISIE, Hangzhou, China.Google Scholar
  42. 42.
    Badel, A., & Lefeuvre, E. (2014). Wideband piezoelectric energy harvester tuned through its electronic interface circuit. Journal of Physics: Conference Series, 557, 012115.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SYMME, Université Savoie Mont BlancAnnecyFrance
  2. 2.IEF, Université Paris SudOrsay CedexFrance

Personalised recommendations