Skip to main content

Nonlinear Conditioning Circuits for Piezoelectric Energy Harvesters

  • Chapter
  • First Online:
Nonlinearity in Energy Harvesting Systems

Abstract

Design and analysis of piezoelectric vibration energy harvesters is a complex multi-physics problem related to mechanics, materials science, and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, C. B., & Yates, R. B. (1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical, 52(1), 8–11.

    Article  Google Scholar 

  2. Arroyo, E., Badel, A., Formosa, F., Wu, Y. P., & Qiu, J. (2012). Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments. Sensors and Actuators A: Physical, 183, 148–156.

    Article  Google Scholar 

  3. Krimholtz, R., Leedom, D. A., & Matthaei, G. L. (1970). New equivalent circuits for elementary piezoelectric transducers. Electronics Letters, 6(13), 398–399.

    Article  Google Scholar 

  4. Tilmans, H. A. C. (1996). Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. Journal of Micromechanics and Microengineering, 6(1), 157–176.

    Article  Google Scholar 

  5. Yang, Y., & Tang, L. (2009). Equivalent circuit modeling of piezoelectric energy harvesters. JIMSS, 20(18), 2223–2235.

    Google Scholar 

  6. Renno, J. M., Daqaq, M. F., & Inman, D. J. (2009). On the optimal energy harvesting from a vibration source. JSV, 320(1), 386–405.

    Article  Google Scholar 

  7. Guyomar, D., Badel, A., Lefeuvre, E., & Richard, C. (2005). Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(4), 584–595.

    Article  Google Scholar 

  8. Li, Y., Richard, C. (2014). Piezogenerator impedance matching using Mason equivalent circuit for harvester identification. In Presented at the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (Vol. 9057, p. 90572I).

    Google Scholar 

  9. Erickson, R. W., & Maksimovic, D. (2001). Fundamentals of power electronics. US: Springer.

    Book  Google Scholar 

  10. Lefeuvre, E., Sebald, G., Guyomar, D., & Lallart, M. (2009). Materials, structures and power interfaces for efficient piezoelectric energy harvesting. Journal of ....

    Google Scholar 

  11. Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512.

    Article  Google Scholar 

  12. Ottman, G. K., Hofmann, H. F., Bhatt, A. C., & Lesieutre, G. A. (2002). Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics, 17(5), 669–676.

    Article  Google Scholar 

  13. Ottman, G. K., Hofmann, H. F., & Lesieutre, G. A. (2003). Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 18(2), 696–703.

    Article  Google Scholar 

  14. Lefeuvre, E., Audigier, D., Richard, C., & Guyomar, D. (2007). Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Transactions on Power Electronics, 22(5), 2018–2025.

    Article  Google Scholar 

  15. Yi, J., Su, F., Lam, Y.-H., Ki, W.-H., & Tsui, C.-Y. (2008). An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting. In Presented at the 2008 IEEE International Symposium on Circuits and Systems—ISCAS 2008 (pp. 2570–2573).

    Google Scholar 

  16. Kong, N., & Ha, D. S. (2012). Low-power design of a self-powered piezoelectric energy harvesting system with maximum power point tracking. IEEE Transactions on Power Electronics, 27(5), 2298–2308.

    Article  Google Scholar 

  17. Shim, M., Kim, J., Jung, J., & Kim, C. (2014). Self-powered 30 \(\mu \)W-to-10 mW piezoelectric energy-harvesting system with 9.09ms/V maximum power point tracking time. In 2014 IEEE International Solid- State Circuits Conference (ISSCC) (pp. 406–407).

    Google Scholar 

  18. Bandyopadhyay, S., Mercier, P. P., Lysaght, A. C., Stankovic, K. M., & Chandrakasan, A. P. (2014). A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants. IEEE Journal of Solid-state Circuits, 49(12), 2812–2824.

    Article  Google Scholar 

  19. Richard, C., Guyomar, D., Audigier, D., & Ching, G. (1999). Semi-passive damping using continuous switching of a piezoelectric device. In Presented at the 1999 Symposium on Smart Structures and Materials, 3672, 104–111.

    Google Scholar 

  20. Badel, A. (2005). Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion. JIMSS, 16(10), 889–901.

    Google Scholar 

  21. Lefeuvre, E., Badel, A., Richard, C., & Guyomar, D. (2004). High-performance piezoelectric vibration energy reclamation. Smart Structures and Materials, 5390, 379–387.

    Google Scholar 

  22. Shu, Y. C., Lien, I. C., & Wu, W. J. (2007). An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16(6), 2253–2264.

    Article  Google Scholar 

  23. Lefeuvre, E., Badel, A., Richard, C., Petit, L., & Guyomar, D. (2006). A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators A: Physical, 126(2), 405–416.

    Article  Google Scholar 

  24. Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B., & Wel, T. R. (2001). The energy harvesting Eel: A small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26(4), 539–547.

    Article  Google Scholar 

  25. Badel, A., Benayad, A., Lefeuvre, E., Lebrun, L., Richard, C., & Guyomar, D. (2006). Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(4), 673–684.

    Google Scholar 

  26. Lefeuvre, E. (2005). Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. JIMSS, 16(10), 865–876.

    Google Scholar 

  27. Makihara, K., Onoda, J., & Miyakawa, T. (2006). Low energy dissipation electric circuit for energy harvesting. Smart Materials and Structures, 15(5), 1493–1498.

    Article  Google Scholar 

  28. Lallart, M., & Guyomar, D. (May 2008). An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials andStructures, 17(3), 035030–9.

    Google Scholar 

  29. Garbuio, L., Lallart, M., Guyomar, D., Richard, C., & Audigier, D. (2009). Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique. IEEE Transactions on Industrial Electronics, 56(4), 1048–1056.

    Article  Google Scholar 

  30. Elliott, A. D. T., & Mitcheson, P. D. (2012). Implementation of a single supply pre-biasing circuit for piezoelectric energy harvesters. Procedia Engineering, 47, 1311–1314.

    Article  Google Scholar 

  31. Lallart, M., Garbuio, L., Petit, L., Richard, C., & Guyomar, D. (2008). Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(10), 2119–2130.

    Article  Google Scholar 

  32. Shen, H., Qiu, J., Ji, H., Zhu, K., & Balsi, M. (2010). Enhanced synchronized switch harvesting: a new energy harvesting scheme for efficient energy extraction. Smart Materials and Structures, 19(11), 115017.

    Article  Google Scholar 

  33. Wu, W. J., Wickenheiser, A. M., Reissman, T., & Garcia, E. (2009). Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers. Smart Materials and Structures, 18(5), 055012–15.

    Google Scholar 

  34. Dicken, J., Mitcheson, P. D., & Stoianov, I. (2009). Increased power output from piezoelectric energy harvesters by pre-biasing. In Presented at the PowerMEMS 2011.

    Google Scholar 

  35. Liu, Y., Tian, G., Wang, Y., Lin, J., Zhang, Q. H. F., & Hofmann (2009). Active piezoelectric energy harvesting: general principle and experimental demonstration. JIMSS, 20(5), 575–585.

    Google Scholar 

  36. Deterre, M., Lefeuvre, E., & Dufour-Gergam, E. (2012). An active piezoelectric energy extraction method for pressure energy harvesting. Smart Materials and Structures, 21(8), 085004.

    Article  Google Scholar 

  37. Wu, Y. P., Badel, A., Formosa, F., Liu, W. Q., & Agbossou, A. E. (2013). Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. JIMSS, 24(12), 1445–1458.

    Google Scholar 

  38. Wu, Y. P., Badel, A., Formosa, F., Liu, W. Q., & Agbossou, A. (2014). Self-powered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting. JIMSS, 25(17), 2165–2176.

    Google Scholar 

  39. Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 94(16), 164102.

    Article  Google Scholar 

  40. Eichhorn, C., Tchagsim, R., Wilhelm, N., & Woias, P. (2011). A smart and self-sufficient frequency tunable vibration energy harvester. Journal of Micromechanics and Microengineering, 21(10), 104003.

    Article  Google Scholar 

  41. Ahmed Seddik, B., Despesse, & Defay, E. (2012). Autonomous wideband mechanical energy harvester. In Presented at the IEEE International Symposium on Industrial Electronics ISIE, Hangzhou, China.

    Google Scholar 

  42. Badel, A., & Lefeuvre, E. (2014). Wideband piezoelectric energy harvester tuned through its electronic interface circuit. Journal of Physics: Conference Series, 557, 012115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Badel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Badel, A., Lefeuvre, E. (2016). Nonlinear Conditioning Circuits for Piezoelectric Energy Harvesters. In: Blokhina, E., El Aroudi, A., Alarcon, E., Galayko, D. (eds) Nonlinearity in Energy Harvesting Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-20355-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20355-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20354-6

  • Online ISBN: 978-3-319-20355-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics