Skip to main content

Introduction to Vibration Energy Harvesting

  • Chapter
  • First Online:
Nonlinearity in Energy Harvesting Systems

Abstract

This chapter introduces and discusses the fundamental concepts of energy harvesting. In particular, we explain what energy sources are available in the environment and why vibration energy is so convenient for conversion. We also discuss the concept of the vibration energy harvester as a system: what structural blocks are required to facilitate vibration-to-electricity conversion. Finally, we explain the role of nonlinearity and how it can be used to improve the performance of energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikander, O. (2000). Handbook of ancient water technology (741p). Brill: Leiden. ISBN 414176647.

    Google Scholar 

  2. Drachmann, A. (1961). Heron’s windmill. Centaurus, 7, 145–151.

    Google Scholar 

  3. Briand, D., Yeatman, E., Roundy, S., Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G., & Tabata, O. (2015). Micro energy harvesting (Vol. 12). John Wiley & Sons.

    Google Scholar 

  4. Paradiso, J., Starner, T., et al. (2005). Energy scavenging for mobile and wireless electronics. Pervasive Computing, IEEE, 4(1), 18–27.

    Article  Google Scholar 

  5. Selvan, K. V., & Ali, M. S. M. (2016). Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renewable and Sustainable Energy Reviews, 54, 1035–1047.

    Article  Google Scholar 

  6. Vullers, R., van Schaijk, R., Doms, I., Van Hoof, C., & Mertens, R. (2009). Micropower energy harvesting. Solid-State Electronics, 53(7), 684–693.

    Article  Google Scholar 

  7. MicroGen Systems, Inc. https://www.microgensystems.com

  8. Perpetuumm ltd. http://www.perpetuum.com.

  9. Hayakawa, M. (1991). Electronic wristwatch with generator. https://www.google.ie/patents/US5001685 US Patent 5,001,685.

  10. Mitcheson, P., Yeatman, E., Rao, G., Holmes, A., & Green, T. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9), 1457–1486.

    Article  Google Scholar 

  11. Becquerel, A. E. (1839). Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Comptes Rendus, 9, 561–567.

    Google Scholar 

  12. Sangani, K. (2007). Power solar-the sun in your pocket. Engineering & Technology, 2(8), 36–38.

    Article  Google Scholar 

  13. Rowe, D. M. (2005). Thermoelectrics handbook: Macro to nano. CRC press.

    Google Scholar 

  14. Dudka, A. (2014). Study, optimization and silicon implementation of a smart high-voltage conditioning circuit for electrostatic vibration energy harvesting system. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI.

    Google Scholar 

  15. Settaluri, K. T., Lo, H., & Ram, R. J. (2012). Thin thermoelectric generator system for body energy harvesting. Journal of Electronic Materials, 41(6), 984–988.

    Article  Google Scholar 

  16. Hsiao, Y., Chang, W., & Chen, S. (2010). A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 35(3), 1447–1454.

    Article  Google Scholar 

  17. Bergqvist, U., Friedrich, G., Hamnerius, Y., Martens, L., Neubauer, G., Thuroczy, G., Vogel, E., & Wiart, J. (2000). Mobile telecommunication base stations–exposure to electromagnetic fields. Report of a short term mission within COST-244bis, COST-244bis short term mission on base station exposure.

    Google Scholar 

  18. Visser, H. J., Reniers, A. C., & Theeuwes, J. A. (2008). Ambient rf energy scavenging: Gsm and wlan power density measurements. In Microwave Conference, 2008. EuMC 2008. 38th European (pp. 721–724). IEEE.

    Google Scholar 

  19. Fan, Y., Hu, H., & Liu, H. (2007). Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science & Technology, 41(23), 8154–8158.

    Article  Google Scholar 

  20. Hou, J., Liu, Z., & Zhang, P. (2013). A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. Journal of Power Sources, 224, 139–144.

    Article  Google Scholar 

  21. Bu, L., Wu, X., Wang, X., & Liu, L. (2013). Liquid encapsulated electrostatic energy harvester for low-frequency vibrations. Journal of Intelligent Material Systems and Structures, 24(1), 61–69.

    Article  Google Scholar 

  22. Despesse, G., Jager, T., Chaillout, J.J., Lger, J.M., Vassilev, A., Basrour, S., & Charlot, B. (2005). Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. In Proceedings of DTIP MEMS MOEMS Conference (pp. 386–390).

    Google Scholar 

  23. Dudka, A., Galayko, D., & Basset, P. (2009). Smart adaptive power management in electrostatic harvester of vibration energy. In Proceedings of power-MEMS conference (pp. 257–260).

    Google Scholar 

  24. Galayko, D., & Basset, P. (2011). A general analytical tool for the design of vibration energy harvesters (VEHs) based on the mechanical impedance concept. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(2), 299–311.

    Article  MathSciNet  Google Scholar 

  25. Naruse, Y., Matsubara, N., Mabuchi, K., Izumi, M., & Suzuki, S. (2009). Electrostatic micro power generation from low-frequency vibration such as human motion. Journal of Micromechanics and Microengineering, 19, 094,002.

    Google Scholar 

  26. de Queiroz, A. C. M. (2010). Electrostatic vibrational energy harvesting using a variation of Bennet’s doubler. In Circuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on (pp. 404–407). IEEE.

    Google Scholar 

  27. Roundy, S., Wright, P., & Pister, K. (2002). Micro-electrostatic vibration-to-electricity converters. In Proceedings of 2002 ASME International Mechanical Engineering Congress.

    Google Scholar 

  28. Tvedt, L. G. W., Nguyen, D. S., & Halvorsen, E. (2010). Nonlinear behavior of an electrostatic energy harvester under wide-and narrowband excitation. Journal of Microelectromechanical Systems, 19(2), 305–316.

    Article  Google Scholar 

  29. Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.

    Article  Google Scholar 

  30. Rabaey, J. M., Ammer, M. J., da Silva, J. L., Patel, D., & Roundy, S. (2000). Picoradio supports ad hoc ultra-low power wireless networking. Computer, 33(7), 42–48.

    Article  Google Scholar 

  31. Stordeur, M., & Stark, I. (1997). Low power thermoelectric generator-self-sufficient energy supply for micro systems. In Proceedings ICT’97. XVI International Conference on Thermoelectrics, 1997 (pp. 575–577). IEEE.

    Google Scholar 

  32. Neri, I., Travasso, F., Mincigrucci, R., Vocca, H., Orfei, F., & Gammaitoni, L. (2012). A real vibration database for kinetic energy harvesting application. Journal of Intelligent Material Systems and Structures, 1045389X12444488.

    Google Scholar 

  33. Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144.

    Article  Google Scholar 

  34. Ching, N. N., Wong, H. Y., Li, W. J., Leong, P. H., & Wen, Z. (2002). A laser-micromachined vibrational to electrical power transducer for wireless sensing systems. Sensors and Actuators A: Physical, 97–98, 685–690.

    Article  Google Scholar 

  35. Li, W. J., Wen, Z., Wong, P., Chan, G., & Leong, P. (2000). A micromachined vibration-induced power generator for low power sensors of robotic systems. In World Automation Congress: 8th International Symposium on Robotics with Applications (pp. 16–21).

    Google Scholar 

  36. Beeby, S., Torah, R., Tudor, M., Glynne-Jones, P., O’Donnell, T., Saha, C., et al. (2007). A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 17, 1257.

    Article  Google Scholar 

  37. Glynne-Jones, P., Tudor, M. J., Beeby, S. P., & White, N. M. (2004). An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A: Physical, 110(1), 344–349.

    Article  Google Scholar 

  38. Beeby, S. P., Tudor, M. J., & White, N. M. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17, 175.

    Article  Google Scholar 

  39. Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3), R1.

    Article  Google Scholar 

  40. Glynne-Jones, P., Beeby, S., James, E., & White, N. (2001). The modelling of a piezoelectric vibration powered generator for microsystems. In Proceedings of the 11th International Conference on Solid-State Sensors and Actuators, Transducers (Vol. 1, pp. 46–49).

    Google Scholar 

  41. Glynne-Jones, P., Beeby, S. P., & White, N. M. (2001). Towards a piezoelectric vibration-powered microgenerator. IEE Proceedings-Science, Measurement and Technology, 148(2), 68–72.

    Article  Google Scholar 

  42. Roundy, S., & Wright, P. (2004). A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 13, 1131.

    Article  Google Scholar 

  43. Pillatsch, P., Yeatman, E., & Holmes, A. (2013). Real world testing of a piezoelectric rotational energy harvester for human motion. In Journal of Physics: Conference Series (Vol. 476, p. 012010). IOP Publishing.

    Google Scholar 

  44. Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., & Lang, J. (2001). Vibration-to-electric energy conversion. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 9(1), 64–76.

    Google Scholar 

  45. Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., & Bourouina, T. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering 24(3), 035,001.

    Google Scholar 

  46. Pons-Nin, J., Gorreta, S., Dominguez, M., Blokhina, E., O’Connell, D., & Feely, O. (2014). Design and test of resonators using Piezo MUMPS technology. In proceedings of Design, test, integrations and packaging of MEMS/MDEMS (DTIP) Symposium on 2014 (pp. 1–6). Cannes, France, 1–4 April 2014

    Google Scholar 

  47. Lyapunov, A. M. (1966). Stability of motion. New-York and London: Academic Press.

    MATH  Google Scholar 

  48. Poincaré H., J.. J. P... T.. M. V... Y...:

    Google Scholar 

  49. Andronov, A. A. (1987). Theory of oscillators (Vol. 4). Courier Dover Publications.

    Google Scholar 

  50. Nayfeh, A. H., & Mook, D. T. (2008). Nonlinear oscillations. John Wiley & Sons.

    Google Scholar 

  51. Nejmark, I., & Landa, P. (1992). Stochastic and chaotic oscillations (Vol. 77). Springer.

    Google Scholar 

  52. Rabinovich, M. I. (1989). Oscillations and waves: in linear and nonlinear systems (Vol. 50). Taylor & Francis.

    Google Scholar 

  53. Andò, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., & Nouet, P. (2010). Nonlinear mechanism in MEMS devices for energy harvesting applications. Journal of Micromechanics and Microengineering 20, 125,020.

    Google Scholar 

  54. Barton, D. A. W., Burrow, S. G., & Clare, L. R. (2010). Energy harvesting from vibrations with a nonlinear oscillator. Journal of Vibration and Acoustics 132, 0210,091–0210,097.

    Google Scholar 

  55. Daqaq, M. F. (2010). Response of uni-modal Duffing-type harvesters to random forced excitations. Journal of Sound and Vibration, 329, 3621–3631.

    Article  Google Scholar 

  56. Erturk, A., Hoffmann, J., & Inman, D. J. (2009). A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters 94, 254,102.

    Google Scholar 

  57. Miki, D., Honzumi, M., Suzuki, Y., & Kasagi, N. (2010). Large-amplitude mems electret generator with nonlinear spring. In Proceedings of IEEE Conference on Microelectromechanical Systems (MEMS) 2010, 24–28 January, 2010, Wanchai, Hong Kong, (pp. 176–179).

    Google Scholar 

  58. Stanton, S. C., McGehee, C. C., & Mann, B. P. (2010). Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D: Nonlinear Phenomena, 239, 640–653.

    Article  MATH  Google Scholar 

  59. Zhu, D., Tudor, M. J., & Beeby, S. P. (2010). Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Measurement Science and Technology, 21, 022,001.

    Google Scholar 

  60. Nguyen, D., Halvorsen, E., Jensen, G., & Vogl, A. (2010). Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. Journal of Micromechanics and Microengineering, 20(12), 125,009.

    Google Scholar 

  61. Cottone, F., Frizzell, R., Goyal, S., Kelly, G., & Punch, J. (2014). Enhanced vibrational energy harvester based on velocity amplification. Journal of Intelligent Material Systems and Structures, 25, 443–451.

    Google Scholar 

  62. Fu, B., Blokhina, E., O’Connell, D., Feely, O., & Frizzell, R. (2014). A wideband 2-dof resonator for electromagnetic energy harvesting systems. In IEEE International Conference on Electronics, Circuits and Systems (ICECS), 7–10 December, 2014, Marseille, France (pp. 878–881).

    Google Scholar 

  63. Cottone, F., Basset, P., Marty, F., Galayko, D., Gammaitoni, L., Bourouina, & T. (2014). Electrostatic generator with free micro-ball and elastic stoppers for low-frequency vibration harvesting. In IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 26–30 Jan 2014, San Francisco, CA, USA (pp. 385–388).

    Google Scholar 

  64. Le, C.P., & Halvorsen, E. (2012). Mems electrostatic energy harvesters with end-stop effects. Journal of Micromechanics and Microengineering 22, 074,013.

    Google Scholar 

  65. Le, C.P., Halvorsen, E., Sorasen, O., & Yeatman, E. M. (2012). Microscale electrostatic energy harvester using internal impacts. Journal of Intelligent Material Systems and Structures 1045389X12436739.

    Google Scholar 

  66. Galayko, D., Dudka, A., Karami, A., O’Riordan, E., Blokhina, E., Feely, O., & Basset, P. (2015). Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle—part 1: Analysis of the electrical domain. IEEE Transactions on Circuits and System I 62(11), 2652–2663.

    Google Scholar 

  67. O’Riordan, E., Dudka, A., Galayko, D., P. Basset, O.F., & Blokhina, E. (2015). Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle—part 2: Electromechanical and nonlinear analysis. IEEE Trans. on Circuits and Systems I.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Blokhina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blokhina, E., El Aroudi, A., Alarcon, E., Galayko, D. (2016). Introduction to Vibration Energy Harvesting. In: Blokhina, E., El Aroudi, A., Alarcon, E., Galayko, D. (eds) Nonlinearity in Energy Harvesting Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-20355-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20355-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20354-6

  • Online ISBN: 978-3-319-20355-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics