Advertisement

Introduction to Vibration Energy Harvesting

  • Elena Blokhina
  • Abdelali El Aroudi
  • Eduard Alarcon
  • Dimitri Galayko
Chapter

Abstract

This chapter introduces and discusses the fundamental concepts of energy harvesting. In particular, we explain what energy sources are available in the environment and why vibration energy is so convenient for conversion. We also discuss the concept of the vibration energy harvester as a system: what structural blocks are required to facilitate vibration-to-electricity conversion. Finally, we explain the role of nonlinearity and how it can be used to improve the performance of energy harvesters.

Keywords

Microbial Fuel Cell Energy Harvester Proof Mass Mechanical Resonator External Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wikander, O. (2000). Handbook of ancient water technology (741p). Brill: Leiden. ISBN 414176647.Google Scholar
  2. 2.
    Drachmann, A. (1961). Heron’s windmill. Centaurus, 7, 145–151.Google Scholar
  3. 3.
    Briand, D., Yeatman, E., Roundy, S., Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G., & Tabata, O. (2015). Micro energy harvesting (Vol. 12). John Wiley & Sons.Google Scholar
  4. 4.
    Paradiso, J., Starner, T., et al. (2005). Energy scavenging for mobile and wireless electronics. Pervasive Computing, IEEE, 4(1), 18–27.CrossRefGoogle Scholar
  5. 5.
    Selvan, K. V., & Ali, M. S. M. (2016). Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renewable and Sustainable Energy Reviews, 54, 1035–1047.CrossRefGoogle Scholar
  6. 6.
    Vullers, R., van Schaijk, R., Doms, I., Van Hoof, C., & Mertens, R. (2009). Micropower energy harvesting. Solid-State Electronics, 53(7), 684–693.CrossRefGoogle Scholar
  7. 7.
    MicroGen Systems, Inc. https://www.microgensystems.com
  8. 8.
    Perpetuumm ltd. http://www.perpetuum.com.
  9. 9.
    Hayakawa, M. (1991). Electronic wristwatch with generator. https://www.google.ie/patents/US5001685 US Patent 5,001,685.
  10. 10.
    Mitcheson, P., Yeatman, E., Rao, G., Holmes, A., & Green, T. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9), 1457–1486.CrossRefGoogle Scholar
  11. 11.
    Becquerel, A. E. (1839). Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Comptes Rendus, 9, 561–567.Google Scholar
  12. 12.
    Sangani, K. (2007). Power solar-the sun in your pocket. Engineering & Technology, 2(8), 36–38.CrossRefGoogle Scholar
  13. 13.
    Rowe, D. M. (2005). Thermoelectrics handbook: Macro to nano. CRC press.Google Scholar
  14. 14.
    Dudka, A. (2014). Study, optimization and silicon implementation of a smart high-voltage conditioning circuit for electrostatic vibration energy harvesting system. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI.Google Scholar
  15. 15.
    Settaluri, K. T., Lo, H., & Ram, R. J. (2012). Thin thermoelectric generator system for body energy harvesting. Journal of Electronic Materials, 41(6), 984–988.CrossRefGoogle Scholar
  16. 16.
    Hsiao, Y., Chang, W., & Chen, S. (2010). A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 35(3), 1447–1454.CrossRefGoogle Scholar
  17. 17.
    Bergqvist, U., Friedrich, G., Hamnerius, Y., Martens, L., Neubauer, G., Thuroczy, G., Vogel, E., & Wiart, J. (2000). Mobile telecommunication base stations–exposure to electromagnetic fields. Report of a short term mission within COST-244bis, COST-244bis short term mission on base station exposure.Google Scholar
  18. 18.
    Visser, H. J., Reniers, A. C., & Theeuwes, J. A. (2008). Ambient rf energy scavenging: Gsm and wlan power density measurements. In Microwave Conference, 2008. EuMC 2008. 38th European (pp. 721–724). IEEE.Google Scholar
  19. 19.
    Fan, Y., Hu, H., & Liu, H. (2007). Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science & Technology, 41(23), 8154–8158.CrossRefGoogle Scholar
  20. 20.
    Hou, J., Liu, Z., & Zhang, P. (2013). A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. Journal of Power Sources, 224, 139–144.CrossRefGoogle Scholar
  21. 21.
    Bu, L., Wu, X., Wang, X., & Liu, L. (2013). Liquid encapsulated electrostatic energy harvester for low-frequency vibrations. Journal of Intelligent Material Systems and Structures, 24(1), 61–69.CrossRefGoogle Scholar
  22. 22.
    Despesse, G., Jager, T., Chaillout, J.J., Lger, J.M., Vassilev, A., Basrour, S., & Charlot, B. (2005). Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. In Proceedings of DTIP MEMS MOEMS Conference (pp. 386–390).Google Scholar
  23. 23.
    Dudka, A., Galayko, D., & Basset, P. (2009). Smart adaptive power management in electrostatic harvester of vibration energy. In Proceedings of power-MEMS conference (pp. 257–260).Google Scholar
  24. 24.
    Galayko, D., & Basset, P. (2011). A general analytical tool for the design of vibration energy harvesters (VEHs) based on the mechanical impedance concept. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(2), 299–311.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Naruse, Y., Matsubara, N., Mabuchi, K., Izumi, M., & Suzuki, S. (2009). Electrostatic micro power generation from low-frequency vibration such as human motion. Journal of Micromechanics and Microengineering, 19, 094,002.Google Scholar
  26. 26.
    de Queiroz, A. C. M. (2010). Electrostatic vibrational energy harvesting using a variation of Bennet’s doubler. In Circuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on (pp. 404–407). IEEE.Google Scholar
  27. 27.
    Roundy, S., Wright, P., & Pister, K. (2002). Micro-electrostatic vibration-to-electricity converters. In Proceedings of 2002 ASME International Mechanical Engineering Congress.Google Scholar
  28. 28.
    Tvedt, L. G. W., Nguyen, D. S., & Halvorsen, E. (2010). Nonlinear behavior of an electrostatic energy harvester under wide-and narrowband excitation. Journal of Microelectromechanical Systems, 19(2), 305–316.CrossRefGoogle Scholar
  29. 29.
    Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.CrossRefGoogle Scholar
  30. 30.
    Rabaey, J. M., Ammer, M. J., da Silva, J. L., Patel, D., & Roundy, S. (2000). Picoradio supports ad hoc ultra-low power wireless networking. Computer, 33(7), 42–48.CrossRefGoogle Scholar
  31. 31.
    Stordeur, M., & Stark, I. (1997). Low power thermoelectric generator-self-sufficient energy supply for micro systems. In Proceedings ICT’97. XVI International Conference on Thermoelectrics, 1997 (pp. 575–577). IEEE.Google Scholar
  32. 32.
    Neri, I., Travasso, F., Mincigrucci, R., Vocca, H., Orfei, F., & Gammaitoni, L. (2012). A real vibration database for kinetic energy harvesting application. Journal of Intelligent Material Systems and Structures, 1045389X12444488.Google Scholar
  33. 33.
    Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144.CrossRefGoogle Scholar
  34. 34.
    Ching, N. N., Wong, H. Y., Li, W. J., Leong, P. H., & Wen, Z. (2002). A laser-micromachined vibrational to electrical power transducer for wireless sensing systems. Sensors and Actuators A: Physical, 97–98, 685–690.CrossRefGoogle Scholar
  35. 35.
    Li, W. J., Wen, Z., Wong, P., Chan, G., & Leong, P. (2000). A micromachined vibration-induced power generator for low power sensors of robotic systems. In World Automation Congress: 8th International Symposium on Robotics with Applications (pp. 16–21).Google Scholar
  36. 36.
    Beeby, S., Torah, R., Tudor, M., Glynne-Jones, P., O’Donnell, T., Saha, C., et al. (2007). A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 17, 1257.CrossRefGoogle Scholar
  37. 37.
    Glynne-Jones, P., Tudor, M. J., Beeby, S. P., & White, N. M. (2004). An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A: Physical, 110(1), 344–349.CrossRefGoogle Scholar
  38. 38.
    Beeby, S. P., Tudor, M. J., & White, N. M. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17, 175.CrossRefGoogle Scholar
  39. 39.
    Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3), R1.CrossRefGoogle Scholar
  40. 40.
    Glynne-Jones, P., Beeby, S., James, E., & White, N. (2001). The modelling of a piezoelectric vibration powered generator for microsystems. In Proceedings of the 11th International Conference on Solid-State Sensors and Actuators, Transducers (Vol. 1, pp. 46–49).Google Scholar
  41. 41.
    Glynne-Jones, P., Beeby, S. P., & White, N. M. (2001). Towards a piezoelectric vibration-powered microgenerator. IEE Proceedings-Science, Measurement and Technology, 148(2), 68–72.CrossRefGoogle Scholar
  42. 42.
    Roundy, S., & Wright, P. (2004). A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 13, 1131.CrossRefGoogle Scholar
  43. 43.
    Pillatsch, P., Yeatman, E., & Holmes, A. (2013). Real world testing of a piezoelectric rotational energy harvester for human motion. In Journal of Physics: Conference Series (Vol. 476, p. 012010). IOP Publishing.Google Scholar
  44. 44.
    Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., & Lang, J. (2001). Vibration-to-electric energy conversion. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 9(1), 64–76.Google Scholar
  45. 45.
    Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., & Bourouina, T. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering 24(3), 035,001.Google Scholar
  46. 46.
    Pons-Nin, J., Gorreta, S., Dominguez, M., Blokhina, E., O’Connell, D., & Feely, O. (2014). Design and test of resonators using Piezo MUMPS technology. In proceedings of Design, test, integrations and packaging of MEMS/MDEMS (DTIP) Symposium on 2014 (pp. 1–6). Cannes, France, 1–4 April 2014Google Scholar
  47. 47.
    Lyapunov, A. M. (1966). Stability of motion. New-York and London: Academic Press.zbMATHGoogle Scholar
  48. 48.
    Poincaré H., J.. J. P... T.. M. V... Y...:Google Scholar
  49. 49.
    Andronov, A. A. (1987). Theory of oscillators (Vol. 4). Courier Dover Publications.Google Scholar
  50. 50.
    Nayfeh, A. H., & Mook, D. T. (2008). Nonlinear oscillations. John Wiley & Sons.Google Scholar
  51. 51.
    Nejmark, I., & Landa, P. (1992). Stochastic and chaotic oscillations (Vol. 77). Springer.Google Scholar
  52. 52.
    Rabinovich, M. I. (1989). Oscillations and waves: in linear and nonlinear systems (Vol. 50). Taylor & Francis.Google Scholar
  53. 53.
    Andò, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., & Nouet, P. (2010). Nonlinear mechanism in MEMS devices for energy harvesting applications. Journal of Micromechanics and Microengineering 20, 125,020.Google Scholar
  54. 54.
    Barton, D. A. W., Burrow, S. G., & Clare, L. R. (2010). Energy harvesting from vibrations with a nonlinear oscillator. Journal of Vibration and Acoustics 132, 0210,091–0210,097.Google Scholar
  55. 55.
    Daqaq, M. F. (2010). Response of uni-modal Duffing-type harvesters to random forced excitations. Journal of Sound and Vibration, 329, 3621–3631.CrossRefGoogle Scholar
  56. 56.
    Erturk, A., Hoffmann, J., & Inman, D. J. (2009). A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters 94, 254,102.Google Scholar
  57. 57.
    Miki, D., Honzumi, M., Suzuki, Y., & Kasagi, N. (2010). Large-amplitude mems electret generator with nonlinear spring. In Proceedings of IEEE Conference on Microelectromechanical Systems (MEMS) 2010, 24–28 January, 2010, Wanchai, Hong Kong, (pp. 176–179).Google Scholar
  58. 58.
    Stanton, S. C., McGehee, C. C., & Mann, B. P. (2010). Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D: Nonlinear Phenomena, 239, 640–653.CrossRefzbMATHGoogle Scholar
  59. 59.
    Zhu, D., Tudor, M. J., & Beeby, S. P. (2010). Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Measurement Science and Technology, 21, 022,001.Google Scholar
  60. 60.
    Nguyen, D., Halvorsen, E., Jensen, G., & Vogl, A. (2010). Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. Journal of Micromechanics and Microengineering, 20(12), 125,009.Google Scholar
  61. 61.
    Cottone, F., Frizzell, R., Goyal, S., Kelly, G., & Punch, J. (2014). Enhanced vibrational energy harvester based on velocity amplification. Journal of Intelligent Material Systems and Structures, 25, 443–451.Google Scholar
  62. 62.
    Fu, B., Blokhina, E., O’Connell, D., Feely, O., & Frizzell, R. (2014). A wideband 2-dof resonator for electromagnetic energy harvesting systems. In IEEE International Conference on Electronics, Circuits and Systems (ICECS), 7–10 December, 2014, Marseille, France (pp. 878–881).Google Scholar
  63. 63.
    Cottone, F., Basset, P., Marty, F., Galayko, D., Gammaitoni, L., Bourouina, & T. (2014). Electrostatic generator with free micro-ball and elastic stoppers for low-frequency vibration harvesting. In IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 26–30 Jan 2014, San Francisco, CA, USA (pp. 385–388).Google Scholar
  64. 64.
    Le, C.P., & Halvorsen, E. (2012). Mems electrostatic energy harvesters with end-stop effects. Journal of Micromechanics and Microengineering 22, 074,013.Google Scholar
  65. 65.
    Le, C.P., Halvorsen, E., Sorasen, O., & Yeatman, E. M. (2012). Microscale electrostatic energy harvester using internal impacts. Journal of Intelligent Material Systems and Structures 1045389X12436739.Google Scholar
  66. 66.
    Galayko, D., Dudka, A., Karami, A., O’Riordan, E., Blokhina, E., Feely, O., & Basset, P. (2015). Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle—part 1: Analysis of the electrical domain. IEEE Transactions on Circuits and System I 62(11), 2652–2663.Google Scholar
  67. 67.
    O’Riordan, E., Dudka, A., Galayko, D., P. Basset, O.F., & Blokhina, E. (2015). Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle—part 2: Electromechanical and nonlinear analysis. IEEE Trans. on Circuits and Systems I.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Elena Blokhina
    • 1
  • Abdelali El Aroudi
    • 2
  • Eduard Alarcon
    • 3
  • Dimitri Galayko
    • 4
  1. 1.University College DublinDublinIreland
  2. 2.University Rovira I VirgiliTarragonaSpain
  3. 3.Universitat Politécnica de CatalunyaBarcelonaSpain
  4. 4.UPMC — Sorbonne UniversitiesParisFrance

Personalised recommendations