Desirability Functions in Multiresponse Optimization

  • Başak Akteke-ÖztürkEmail author
  • Gerhard-Wilhelm Weber
  • Gülser Köksal
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 499)


Desirability functions (DFs) play an increasing role for solving the optimization of process or product quality problems having various quality characteristics to obtain a good compromise between these characteristics. There are many alternative formulations to these functions and solution strategies suggested for handling their weaknesses and improving their strength. Although the DFs of Derringer and Suich are the most popular ones in multiple-response optimization literature, there is a limited number of solution strategies to their optimization which need to be updated with new research results obtained in the area of nonlinear optimization.


Desirability Function Lower Level Problem Direct Search Method Individual Desirability Desirability Function Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akteke-Öztürk, B., Köksal, G., Weber, G.-W.: Nonconvex optimization of desirability functions using nonsmooth and global optimization approaches. Technical report, 01, Department of Industrial Engineering, Middle East Technical UniversityGoogle Scholar
  2. BARON, v. 8.1.5 (2010).
  3. Burachik, R.S., Gasimov, R.N., Ismayilova, N.A., Kaya, C.Y.: On a modified subgradient algorithm for dual problems via sharp augmented lagrangian. J. Global Optim. 34(1), 55–78 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  4. Chen, H.-W., Wong, W.K., Hongquan, X.: An augmented approach to the desirability function. J. Appl. Stat. 39(3), 599–613 (2012)MathSciNetCrossRefGoogle Scholar
  5. Ch’ng, C.K., Quah, S.H., Low, H.C.: A new approach for multiple-response optimization. Qual. Eng. 17, 621–626 (2005)CrossRefGoogle Scholar
  6. Clarke, F.: Optimization and Nonsmooth Analysis. SIAM’s Classics in Applied Mathematics Series. SIAM, Philadelphia (1983)zbMATHGoogle Scholar
  7. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM Book Series on Optimization. SIAM, Philadelphia (2009)zbMATHCrossRefGoogle Scholar
  8. Costa, N.R., Loureno, J.: Desirability function approach: a review and performance evaluation in adverse conditions. Chemometr. Intell. Lab Syst. 107, 234–244 (2011)CrossRefGoogle Scholar
  9. CONOPT, v. 3.14S (2010).
  10. Del Castillo, E., Montgomery, D.C., McCarville, D.R.: Modified desirability functions for multiple response optimization. J. Qual. Technol. 28(3), 337–345 (1996)Google Scholar
  11. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  12. Demyanov, V.F., Rubinov, A.M.: Quasidifferentiable Calculus. Optimization Software. Publications Division, New York (1986)CrossRefGoogle Scholar
  13. Derringer, G., Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. 12, 214–219 (1980)Google Scholar
  14. Derringer, G.: A balancing act, optimizing a products properties. Qual. Prog. 27, 51–57 (1994)Google Scholar
  15. DICOPT, v. 2x-C (2010)
  16. Drud, A.S.: CONOPT: a system for large scale nonlinear optimization, tutorial for CONOPT Subroutine Library, p. 16. ARKI Consulting and Development A/S, Bagsvaerd (1995b)Google Scholar
  17. Dutta, J.: Generalized derivatives and nonsmooth optimization, a finite dimensional tour. TOP 13(2), 185–314 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  18. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  19. Fogliatto, F.S.: A survey of techniques for optimizing multiresponse experiments. In: Anais do XVIII ENEGEP Niteroi (1998)Google Scholar
  20. Fuller D., Scherer, W.: The desirability function: Underlying assumptions and application implications. In: IEEE International Conference on Paper Presented at the Systems, Man, and Cybernetics, San Diego, CA (1998)Google Scholar
  21. GAMS, v. 23.0.2 (2010).
  22. Gasimov, R.N., Ustun, O.: Solving the quadratic assignment problem using F-MSG algorithm. J. Ind. Manag. Optim. 3(2), 173–191 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  23. Harrington Jr, E.C.: The desirability function. Ind. Qual. Control 21, 494–498 (1965)Google Scholar
  24. Jeong, I.J., Kim, K.J.: An interactive desirability function method to multiresponse optimization. Eur. J. Oper. Res. 195(2), 412–426 (2008)CrossRefGoogle Scholar
  25. Khuri, A.I.: Multiresponse surface methodology. In: Ghosh, A., Rao, C.R. (eds.) Handbook of statistics: design and analysis of experiments, pp. 377–406. Elsevier, Amsterdam (1996)Google Scholar
  26. Kim, K.J., Lin, D.: Simultaneous optimization of multiple responses by maximizing exponential desirability functions. Appl. Stat. 49(C), 311–325 (2000)zbMATHMathSciNetGoogle Scholar
  27. Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M.: Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans. Math. Softw. 4(1), 34–50 (1978)zbMATHCrossRefGoogle Scholar
  28. Lemarechal, C.: Bundle-methods in nonsmooth optimization. In: Lemarechal, C., Mifflin, R. (eds.) Nonsmooth Optimization. Pergamon Press, Oxford (1978)Google Scholar
  29. Logothetis, N., Wynn, H.P.: Quality Through Design. Oxford Science Publications, Clarendon Press, Oxford (1989)Google Scholar
  30. Lundell, A., Westerlund, T.: Global optimization of mixed-integer signomial programming problems. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, pp. 349–369. Springer, New York (2012) CrossRefGoogle Scholar
  31. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999) zbMATHGoogle Scholar
  32. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2000) Google Scholar
  33. Murphy, T., Tsui, K.-L., Allen, J.K.: A review of robust design methods for multiple responses. Res. Eng. Design 16, 118–132 (2005)CrossRefGoogle Scholar
  34. Ozdaglar, A., Tseng, P.: Existence of global minima for constrained optimization. J. Optim. Theory Appl. 128, 523–546 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  35. Pardalos, P.M., Romeijn, H.E. (eds.): Handbook of Global Optimization, vol. 2. Kluwer Academic, Dordrecht (2002) zbMATHGoogle Scholar
  36. Park, K.S., Kim, K.J.: Optimizing multi-response surface problems: how to use multi-objective optimization techniques. IIE Trans. 37(6), 523–532 (2005)CrossRefGoogle Scholar
  37. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8(2), 107–138 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  38. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimization and Its Applications Series. Kluwer Academic Publishers, Boston (2002) CrossRefGoogle Scholar
  39. Wu, C.F.J., Hamada, M.: Experiments: Planning, Analysis, and Parameter Design Optimization. Wiley- Interscience, New York (2000) Google Scholar
  40. Wu, F.-C.: Optimization of correlated multiple quality characteristics using desirability function. Qual. Eng. 17(1), 119–126 (2004)CrossRefGoogle Scholar
  41. Wu, F.-C.: Robust design of nonlinear multiple dynamic quality characteristics. Comput. Ind. Eng. 56, 1328–1332 (2009)CrossRefGoogle Scholar
  42. Kovach, J., Cho, B.R.: Development of a multidisciplinarymultiresponse robust designn optimization model. Eng. Optim. 40(9), 805–819 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Başak Akteke-Öztürk
    • 1
    Email author
  • Gerhard-Wilhelm Weber
    • 2
  • Gülser Köksal
    • 1
  1. 1.Department of Industrial EngineeringMETUAnkaraTurkey
  2. 2.Institute of Applied MathematicsMETUAnkaraTurkey

Personalised recommendations