Advertisement

Reconstruction of the Surface Heat Flux for a Quasi-linear System of the Hyperbolic Type Heat-Conduction Equations

  • Valentin Borukhov
  • Olga KostyukovaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 499)

Abstract

The problem of the identification of the surface heat flux for a quasi-linear system of the hyperbolic type heat-conduction equations is studied. An approach is proposed based on the stage-by-stage suboptimal optimization of the cost functional and input data filtering using the HuberTikhonov functional. Results are presented for the numerical modeling of the identification problem in conditions of both standard noisy data and noise emissions.

Keywords

Inverse problem Heat flux The hyperbolic type system HuberTikhonov functional Suboptimal optimization 

References

  1. 1.
    Beck, J.V., Blackwell, B., St. Clair Jr., C.R.: Inverse Heat Conduction: Ill-Posed Problems. Wiley, New York (1985)zbMATHGoogle Scholar
  2. 2.
    Ozisik, M.N., Orlande, H.R.B.: Inverse Heat Transfer: Fundamentals and Applications. Tailor and Francis, New York (2000)Google Scholar
  3. 3.
    Alifanov, O.M.: Inverse Heat Transfer Problems. Springer Verlag, Berlin (1994)zbMATHCrossRefGoogle Scholar
  4. 4.
    Murio, D.A.: The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley, New York (1993)CrossRefGoogle Scholar
  5. 5.
    Woodbury, K.A., Beck, J.V.: Estimation metrics and optimal regularization in a Tikhonov digital filter for the inverse heat conduction problem. Int. J. Heat Mass Transf. 62, 31–39 (2013)CrossRefGoogle Scholar
  6. 6.
    Jarny, Y., Orlande, H.R.B.: Adjoint methods. In: Orlande, H.R.B., Fudym, O., Maillet, D., Cotta, R.M. (eds.) Thermal Measurements and Inverse Techniques. CRC Press, Boca Raton (2011)Google Scholar
  7. 7.
    Borukhov, V.T.: Reconstruction of heat fluxes through differential temperature measurement by the method of inverse dynamic systems. J. Eng. Phys. Thermophys. 47(3), 1098–1102 (1984)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lee, H.-L., Chang, W.-J., Wu, S.-C., Yang, Y.-C.: An inverse problem in estimatingthe base heat flux of an annular fin based on the hyperbolic model of heat conduction. Int. Commun. Heat Mass Transf. 44, 31–37 (2013)CrossRefGoogle Scholar
  9. 9.
    Christov, C.I., Jordan, P.M.: Heat conduction paradox involving second sound propagation in moving media. Phys. Rev. Lett. 94(15), 154301 (2005)CrossRefGoogle Scholar
  10. 10.
    Papanicolaou, N.C., Christov, C.I., Jordan, P.M.: The influence of thermal relaxation on the oscillatory properties of two-gradient convection in a vertical slot. Eur. J. Mech. B. Fluids 30, 68–75 (2011)zbMATHCrossRefGoogle Scholar
  11. 11.
    Vernotte, P.: Paradoxes in the continuous theory of the heat equation. Compt. Rend. Acad. Sci. (Paris) 246, 3154–3155 (1958)MathSciNetGoogle Scholar
  12. 12.
    Cattaneo, C.: A form of heat conduction which eliminates the paradox of instantaneous propagation. Compt. Rend. Acad. Sci. (Paris) 247, 431–433 (1958)MathSciNetGoogle Scholar
  13. 13.
    Luikov, A.V., Bubnov, V.A., Soloview, I.A.: On the wave solutions of heat conduction equation. Int. J. Heat Mass Transf. 19, 245–248 (1976)CrossRefGoogle Scholar
  14. 14.
    Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)CrossRefGoogle Scholar
  15. 15.
    Ván, P., Czél, B., Fülöp, T., Gyenis, G., Gróf, Á., Verha, J.: Experimenal aspects of heat conduction beyond Fourier. Thesis, 12th Joint European Thermodynamics Conference, Brescia (2013)Google Scholar
  16. 16.
    Zubair, S.M., Chaudhry, M.A.: Int. J. Heat Mass Transf. 39(14), 3067–3074 (1996)Google Scholar
  17. 17.
    Borukhov, V.T., Kostyukova, O.I., Kurdina, M.A.: Tracking of the preset program of weighted temperatures and reconstruction of heat transfer coefficients. J. Eng. Phys. Thermophys. 83(3), 622–631 (2010)CrossRefGoogle Scholar
  18. 18.
    Borukhov, V.T., Kostyukova, O.I.: Identification of timedependent coefficients of heat transfer by the method of suboptimal stagebystage optimization. Int. J. Heat Mass Transf. 59, 286–294 (2013)CrossRefGoogle Scholar
  19. 19.
    Borukhov, V.T., Kostyukova, O.I.: Reconstruction of Heat Transfer Coefficients Using the Approach of Stage by Stage Suboptimal Optimization and Huber. Tikhonov Filtering of Input Data. Autom. Control Comput. Sci. 47(6), 289–299 (2013)CrossRefGoogle Scholar
  20. 20.
    Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer-Verlag, Heidelberg (1984)CrossRefGoogle Scholar
  21. 21.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. V.H. Winston & Sons, Washington, D.C. (1977)zbMATHGoogle Scholar
  22. 22.
    Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)zbMATHCrossRefGoogle Scholar
  23. 23.
    Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, New York (2009)zbMATHCrossRefGoogle Scholar
  24. 24.
    Petrus, P.: Robust Huber adaptive filter. IEEE Trans. Signal Process. 47(4), 1129–1133 (1999)CrossRefGoogle Scholar
  25. 25.
    Binder, T., Kostina, E.: GaussNewton methods for robust parameter estimation. In: Bock, H.G., Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J.P. (eds.) Model Based Parameter Estimation, vol. 4, pp. 55–87. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Alifanov, O.M.: Identifikatsiya protsessov teploobmena letatelnykh apparatov (vvedenie v teoriyu obratnykh zadach) (Identification of Heat Transfer Processes of Aircrafts (Introduction to the Theory of Inverse Problems)). Mashinostroenie, Moscow (1979)Google Scholar
  27. 27.
    Malanowski, K., Maurer, H.: Sensitivity analysis of optimal control problems subject to higher order state constraints. Ann. Oper. Res. 101, 43–73 (2001). (Optimization with Data Perturbations II)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Mathematics, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations