Multicriteria Optimization in a Typical Multi-Isle Warehouse with Multiple Racks

  • Diana G. Ramirez-RiosEmail author
  • Laura P. Manotas Romero
  • Jairo  R.  Montoya-Torres
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 499)


This paper considers two common problems frequently found in warehouses: slotting and picking. The former refers to the best arrangement of items in the warehouse, while the latter concerns the definition of the best route to pick up the selected objects. In most industrial practice, the implementation of picking and slotting optimization techniques uses information based on historical data that, in most cases, would fail to work because of many factors affecting daily operations in the warehouse. Simulation models have been employed to build virtual scenarios in order to predict the outcomes of a specific operational decision. Simulation models also fail because collected data is not fully reliable. In order to overcome those problems, this paper proposes the use of a hybrid simulation and optimization approach in which real-time data is incorporated thanks to radio-frequency identification (RFID) technology. Operational decisions are hence made in real-time. The approach is validated using real data from a pharmaceutical manufacturer.


Warehousing Multi-criteria optimization Simulation Information processing RFID 



This work was supported by the Colombian Department of Science, Technology and Innovation COLCIENCIAS and Centro de Investigación en Modelación Empresarial del Caribe (FCIMEC) through the project entitled: “Diseño e implementaciòn de centros de almacenamiento automatizados mediante la aplicación de tecnologí as EPC-RFID”, grant number 2233-454-25947. Special thanks to the team that worked in this Project: Luis Ramirez, Lauren Castro, Miguel Jiménez, Erik Maldonado and Fernando González.


  1. 1.
    Accorsi, R., Manzini, R., Maranesi, F.: A decision-support system for the design and management of warehousing systems. Comput. Ind. 65(1), 175–186 (2014)CrossRefGoogle Scholar
  2. 2.
    De Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: a comprehensive review. Eur. J. Oper. Res. 177(1), 1–21 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dallari, F., Marchet, G., Melancini, M.: Design of order picking system. Int. J. Adv. Manuf. Technol. 42(1–2), 1–12 (2009)CrossRefGoogle Scholar
  5. 5.
    Strack, G., Pochet, Y.: An integrated model for warehouse and inventory planning. Eur. J. Oper. Res. 204(1), 35–50 (2010)zbMATHCrossRefGoogle Scholar
  6. 6.
    Ramirez, D.G., Ramirez, L.E., Castro, L.J., Jimenez, M.A., Manotas, L.P.: RFID Implementation and simulation-based system dynamics for optimizing warehousing strategies under multiple criteria. In: Proceedings of the Tenth LACCEI Latin American and Caribbean Conference (LACCEI 2012), July 23–27, Panama City, Panama (2012)Google Scholar
  7. 7.
    Baker, P.: Will tags get out into the supply chain? Works Manag. 58(2), 34–37 (2005)Google Scholar
  8. 8.
    Patadia, S., Dua, S., Meyers, M.: Mike Meyers’ CompTIA RFID + Certification Passport. McGraw-Hill Publishing, New York (2007)Google Scholar
  9. 9.
    Ngai, E.W.T., Moon, K.K., Riggins, F.J., Yi, C.Y.: RFID research: an academic literature review (1995–2005) and future research directions. Int. J. Prod. Econ. 112(2), 510–520 (2008)CrossRefGoogle Scholar
  10. 10.
    Shuhua, M., Yanzhu, H.: Research on the order picking optimization problem of the automated warehouse. In: Proceedings of the IEEE Chinese Control and Decision Conference, pp. 990–993 (2009)Google Scholar
  11. 11.
    Bartholdi III, J.J., Subramanian, S.: Pick-path optimization. (Accessed 25 January 2013)
  12. 12.
    Roodbergen, K.J., De Koster, R.: Routing methods for warehouses with multiple cross aisles. Int. J. Prod. Res. 39(9), 32–43 (2001)CrossRefGoogle Scholar
  13. 13.
    Vaughan, T.S.: The effect of warehouse cross aisles on order picking efficiency. Int. J. Prod. Res. 37(4), 881–897 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ratliff, H.D., Rosenthal, A.S.: Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem. Oper. Res. 31(3), 507–521 (1983)zbMATHCrossRefGoogle Scholar
  15. 15.
    Tang, H.Y., Li, M.J.: An improved ant colony algorithm for order picking optimization problem in automated warehouse. Fuzzy Inf. Eng. 2, 1537–1547 (2009)Google Scholar
  16. 16.
    Li, S.Y., Chen, Y.Q., Li, Y.: Ant Colony Algorithms with Applications. Harbin Institute of Technology Press, Harbin (2004)Google Scholar
  17. 17.
    Zhang, G., Lai, K.: Combining path relinking and genetic algorithms for the multiple-level warehouse layout problem. Eur. J. Oper. Res. 169(2), 413–425 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Huang, X.F., Yun-xia, L.I.U.: Optimization of operational route in AS/RS based on particle swarm algorithm. J. Southwest Jiaotong Univ. (Engl. Ed.) 16(1), Article ID: 1005–2429(2008) 01–0092-03 (2008)Google Scholar
  19. 19.
    Cao, H.Z., Yu, X.C.: Parthenon-genetic simulated annealing algorithm and its application in combinatorial optimization problems. J. Beijing Univ. Posts Telecommun. 3, 38–41 (2008)Google Scholar
  20. 20.
    Chang-you, L., Yun-wei, S., Jia-heng, L.: Intelligent optimizing methods for vehicles scheduling problems in automated warehouse. In: Proceedings of IEEE Control Conference, Hong Kong, pp. 52–56 (2002)Google Scholar
  21. 21.
    Heskett, J.L.: Cube-per-order index- a key to warehouse stock location. Transp. Distrib. Manag. 3, 27–31 (1963)Google Scholar
  22. 22.
    Kallina, C., Lynn, J.: Application of the cube-per-order index rule for stock location in a distribution warehouse. Interfaces 7(1), 37–46 (1976)CrossRefGoogle Scholar
  23. 23.
    Roodbergen, K.J., Vis, I.F.: A model for warehouse layout. IIE Trans. 38(10), 799–811 (2006)CrossRefGoogle Scholar
  24. 24.
    Malmborg, C., Krishnakumar, B., Simons, G.: A mathematical overview of warehousing systems with single/dual order-picking cycles. Appl. Math. Model. 12(1), 2–8 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hou, Y, Li, L. Wang, L.: Picking Routes optimization of automated warehouse based on parthenon genetic ant colony algorithm, International Conference on Convergence Information Technology. Lecture Notes in Information Technology, vol 19, pp. 198–204 (2012)Google Scholar
  26. 26.
    Hooke, R., Jeeves, T.A.: “Direct search" solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)zbMATHCrossRefGoogle Scholar
  27. 27.
    Chen, L., Langevin, A., Riopel, D.: A tabu search algorithm for the relocation problem in a warehousing System. Int. J. Prod. Econ. 129, 147–156 (2011)CrossRefGoogle Scholar
  28. 28.
    Fumi, A., Scarabotti, L., Schiraldi, M.M.: The effect of slot-code optimization in warehouse order picking. Int. J. Eng. Bus. Manag. 5(20), 1–10 (2013)Google Scholar
  29. 29.
    Fumi, A., Scarabotti, L., Schiraldi, M.M.: Minimizing warehouse space with dedicated storage policy. Int. J. Eng. Bus. Manag. 5(21), 1–10 (2013)Google Scholar
  30. 30.
    Battista, C., Fumi, A., Laura, L., Schiraldi, M.M.: Multiproduct slot allocation heuristic to minimize storage space. Int. J. Retail Distrib. Manag. 42(3), 172–186 (2014)CrossRefGoogle Scholar
  31. 31.
    Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons, New York (2011)Google Scholar
  32. 32.
    Marx, D.: Graph colouring problems and their applications in scheduling. Electr. Eng. 48(1–2), 11–16 (2004)Google Scholar
  33. 33.
    Ho, W., Emrouznejad, A.: Multi-criteria logistics distribution network design using SAS/OR. Expert Syst. Appl. 36, 7288–7298 (2009)CrossRefGoogle Scholar
  34. 34.
    Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)MathSciNetGoogle Scholar
  35. 35.
    Tamiz, M., Jones, D., Romero, C.: Goal programming for decision making: an overview of the current state-of-the-art. Eur. J. Oper. Res. 111(3), 569–581 (1998)zbMATHCrossRefGoogle Scholar
  36. 36.
    He, T., Ho, W., Ka Man, C.L., Xu, X.: A fuzzy AHP based integer linear programming model for the multi-criteria transshipment problem. Int. J. Logistics Manag. 23(1), 159–179 (2012)CrossRefGoogle Scholar
  37. 37.
    Kahraman, C., Cebeci, U., Ulukan, Z.: Multi-criteria supplier selection using fuzzy AHP. Logistics Inf. Manag. 16(6), 382–394 (2003)CrossRefGoogle Scholar
  38. 38.
    Tinelli, L.M., Vivaldini, K.C.T., Becker, M.: Intelligent warehouse product position optimization by applying a multi-criteria tool. In: Neto, P., Moreira, A.P. (eds.) WRSM 2013. CCIS, vol. 371, pp. 137–145. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  39. 39.
    Ramírez, D.G., Ramírez, L.E., Jiménez, M.A., Castro, L.J., Maldonado, E.: The design of a real-time warehouse management system that integrates simulation and optimization models with RFID technology. Int. J. Comput. Sci. 2(4), 18–37 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Diana G. Ramirez-Rios
    • 1
    Email author
  • Laura P. Manotas Romero
    • 1
  • Jairo  R.  Montoya-Torres
    • 2
  1. 1.Fundación Centro de Investigacion en Modelacion Empresarial del Caribe (FCIMEC)BarranquillaColombia
  2. 2.Escuela Internacional de Ciencias Económicas y AdministrativasUniversidad de La SabanaChíaColombia

Personalised recommendations