Skip to main content

Biomedical Uses of Porous Silicon

  • Chapter
  • First Online:
Electrochemically Engineered Nanoporous Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 220))

Abstract

The versatility of porous silicon (pSi), due to the myriad of possible structures, ease of chemical modification and inherent biocompatibility, has resulted in it being readily tailored for numerous biomedical applications. Commonly prepared via the anodisation of crystalline silicon wafers in HF electrolyte, pSi can be produced as films, microparticles, nanoparticles and free-standing membranes. The combination of both its unique physical properties and the incorporation of stable surface functionalities have been fundamental to its performance. Through an immense number of modification techniques, numerous species from antibodies to polymers can be integrated into pSi structures. This adaptability has produced materials with an increased half-life both in vitro and in vivo and enabled the development of both targeted detection platforms and local delivery of therapeutic payloads. As a result, modified pSi has been readily applied to a range of biomedical applications including molecular detection, drug delivery, cancer therapy, imaging and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Narayan, Use of nanomaterials in water purification. Mater. Today 13, 44–46 (2010)

    Google Scholar 

  2. N. Linares, A.M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, J. Garcia-Martinez, Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 43, 7681–7717 (2014)

    Google Scholar 

  3. O.V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, (2004)

    Google Scholar 

  4. S.J.P. McInnes, N.H. Voelcker, Silicon–polymer hybrid materials for drug delivery. Future Med. Chem. 1, 1051–1074 (2009)

    Google Scholar 

  5. H.A. Santos, Porous Silicon for Biomedical Applications (Woodhead Publishing Limited, 2014)

    Google Scholar 

  6. F.A. Harraz, Porous silicon chemical sensors and biosensors: a review. Sensor. Actuat. B: Chem. 202, 897–912 (2014)

    Google Scholar 

  7. A. Loni, Capping of porous silicon, in Properties of Porous Silicon, ed. by L. Canham (Short Run Press, London, 2006)

    Google Scholar 

  8. S. Anderson, H. Elliott, D. Wallis, L. Canham, J. Powell, Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys. Stat. Sol. (A). 197, 331–335 (2003)

    Google Scholar 

  9. L.A.R. Canham, Will a chip everyday keep the doctor away? Phys. World 27–31 (2001)

    Google Scholar 

  10. H. Föll, M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon. Mater. Sci. Eng., R 39, 93–141 (2002)

    Google Scholar 

  11. C. Solanki, R. Bilyalov, J. Poortmans, J.P. Celis, J. Nijs, Effect of the composition of electrolyte on separation of porous silicon film by electrochemical etching. Phys. Stat. Sol. (A). 197, 507–511 (2003)

    Google Scholar 

  12. J.R. Dorvee, A.M. Derfus, S.N. Bhatia, M.J. Sailor, Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat. Mater. 3, 896–899 (2004)

    Google Scholar 

  13. J. Link, M. Sailor, Smart dust: self-assembling, self-orienting photonic crystals of porous Si. PNAS 100, 10607–10610 (2003)

    Google Scholar 

  14. J.C. Thomas, C. Pacholski, M.J. Sailor, Delivery of nanogram payloads using magnetic porous silicon microcarriers. Lab Chip 6, 782–787 (2006)

    Google Scholar 

  15. E.C. Wu, J.-H. Park, J. Park, E. Segal, F. Cunin, M.J. Sailor, Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2, 2401–2409 (2008)

    Google Scholar 

  16. J. Heinrich, C. Curtis, G. Credo, K. Kavanagh, M. Sailor, Luminescent colloidal silicon suspensions from porous silicon. Science 255, 66–68 (1992)

    Google Scholar 

  17. T. Schmedake, F. Cunin, J. Link, M. Sailor, Standoff detection of chemicals using porous silicon “smart dust” particles. Adv. Mater. 14, 1270–1272 (2002)

    Google Scholar 

  18. J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009)

    Google Scholar 

  19. M.H. Kafshgari, A. Cavallaro, B. Delalat, F.J. Harding, S.J.P. McInnes, E. Mäkilä, J. Salonen, K. Vasilev, N.H. Voelcker, Nitric oxide-releasing porous silicon nanoparticles. Nanoscale Res. Lett. 9, 333–339 (2014)

    Google Scholar 

  20. S. Kashanian, F. Harding, Y. Irani, S. Klebe, K. Marshall, A. Loni, L. Canham, D. Fan, K.A. Williams, N.H. Voelcker, J.L. Coffer, Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants. Acta Biomater. 6, 3566–3572 (2010)

    Google Scholar 

  21. K.W. Kolasinski, Silicon nanostructures from electroless electrochemical etching. Cur. Opin. Solid State Mater. Sci. 9, 73–83 (2005)

    Google Scholar 

  22. J. Salonen, V.-P. Lehto, Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J. 137, 162–172 (2008)

    Google Scholar 

  23. O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000)

    Google Scholar 

  24. V. Lehmann, Porous silicon preparation: alchemy or electrochemistry? Adv. Mater. 4, 762–764 (1992)

    Google Scholar 

  25. O.I. Ksenofontova, A.V. Vasin, V.V. Egorov, A.V. Bobyl, F.Y. Soldatenkov, E.I. Terukov, V.P. Ulin, N.V. Ulin, O.I. Kiselev, Porous silicon and its applications in biology and medicine. Tech. Phys. 59, 66–77 (2014)

    Google Scholar 

  26. R.J. Martín-Palma, M. Manso-Silván, V. Torres-Costa, Biomedical applications of nanostructured porous silicon: a review. J. Nanophoton. 4, 042502–042520 (2010)

    Google Scholar 

  27. R.L. Smith, S.D. Collins, Porous silicon formation mechanisms. J. Appl. Phys. 71, R1–R22 (1992)

    Google Scholar 

  28. K.L. Jarvis, T.J. Barnes, C.A. Prestidge, Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv. Colloid Interface Sci. 175, 25–38 (2012)

    Google Scholar 

  29. L.T. Canham, Properties of Porous Silicon (Short Run Press, 2006)

    Google Scholar 

  30. G. Bomchil, A. Halimaoui, I. Sagnes, P.A. Badoz, Porous silicon: material properties, visible photo-and electroluminescence. Appl. Surf. Sci. 65–66, 394–407 (1993)

    Google Scholar 

  31. B. González-Díaz, R. Guerrero-Lemus, D. Borchert, C. Hernández-Rodríguez, J.M. Martínez-Duart, Low-porosity porous silicon nanostructures on monocrystalline silicon solar cells. Phys. E 38, 215–218 (2007)

    Google Scholar 

  32. D. Bellet, L. Canham, Controlled drying: the key to better quality porous semiconductors. Adv. Mater. 10, 487–490 (1998)

    Google Scholar 

  33. F. Cunin, T.A. Schmedake, J.R. Link, Y.Y. Li, J. Koh, S.N. Bhatia, M.J. Sailor, Biomolecular screening with encoded porous-silicon photonic crystals. Nat. Mater. 1, 39–41 (2002)

    Google Scholar 

  34. S.N.A. Jenie, Z. Du, S.J.P. McInnes, P. Ung, B. Graham, S.E. Plush, N.H. Voelcker, Biomolecule detection in porous silicon based microcavities via europium luminescence enhancement. J. Mater. Chem. B 2, 7694–7703 (2014)

    Google Scholar 

  35. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)

    Google Scholar 

  36. A. Sa’ar, Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry. J. Nanophoton. 3, 032501, 1–42 (2009)

    Google Scholar 

  37. L. Pavesi, E. Buzaneva (eds.), Silicon light emmitters: preparation, properties, limitations, and integration with microelectronic circuitry, in Frontiers of Nano-optoelectronic Systems (2014)

    Google Scholar 

  38. L.M. Bonanno, T.C. Kwong, L.A. DeLouise, Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques. Anal. Chem. 82, 9711–9718 (2010)

    Google Scholar 

  39. L.M. Bonanno, E. Segal, Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6, 1755–1770 (2011)

    Google Scholar 

  40. C. Pacholski, M. Sartor, M.J. Sailor, F. Cunin, G.M. Miskelly, Biosensing using porous silicon double-layer interferometers: reflective interferometric fourier transform spectroscopy. J. Am. Chem. Soc. 127, 11636–11645 (2005)

    Google Scholar 

  41. S.D. Alvarez, M.P. Schwartz, B. Migliori, C.U. Rang, L. Chao, M.J. Sailor, Using a porous silicon photonic crystal for bacterial cell-based biosensing. Phys. Stat. Sol. (A). 204, 1439–1443 (2007)

    Google Scholar 

  42. A. Janshoff, K.-P.S. Dancil, C. Steinem, D.P. Greiner, V.S.Y. Lin, C. Gurtner, K. Motesharei, M.J. Sailor, M.R. Ghadiri, Macroporous p-type silicon Fabry-Perot layers: fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 120, 12108–12116 (1998)

    Google Scholar 

  43. L. Cheng, E.J. Anglin, F. Cunin, D. Kim, M.J. Sailor, I. Falkenstein, A. Tammewar, W.R. Freeman, Intravitreal properties of porous silicon photonic crystals: a potential self-reporting intraocular drug-delivery vehicle. Br. J. Ophthalmol. 92, 705–711 (2008)

    Google Scholar 

  44. E.C. Wu, J.S. Andrew, L. Cheng, W.R. Freeman, L. Pearson, M.J. Sailor, Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32, 1957–1966 (2011)

    Google Scholar 

  45. E. Tasciotti, B. Godin, J.O. Martinez, C. Chiappini, R. Bhavane, X. Liu, M. Ferrari, Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Mol. Imaging 10, 56–68 (2011)

    Google Scholar 

  46. J.H. Ahire, Q. Wang, P.R. Coxon, G. Malhotra, R. Brydson, R. Chen, Y. Chao, Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: synthesis and their use in biomedical imaging. ACS Appl. Mater. Interfaces 4, 3285–3292 (2012)

    Google Scholar 

  47. A.P. Bowditch, K. Waters, H. Gale, P. Rice, E.A.M. Scott, L.T. Canham, C.L. Reeves, A. Loni, T.I. Cox, In-vivo assessment of tissue compatibility and calcification of bulk and porous silicon. MRS Proc. 536, 149–154

    Google Scholar 

  48. A. Rosengren, L. Wallman, M. Bengtsson, T. Laurell, N. Danielsen, L. Bjursten, Tissue reactions to porous silicon: a comparative biomaterial study. Phys. Stat. Sol. (A). 182, 527–531 (2000)

    Google Scholar 

  49. L.T. Canham, Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033–1037 (1995)

    Google Scholar 

  50. M.J. Sailor, E.J. Lee, Surface chemistry of luminescent silicon nanocrystallites. Adv. Mater. 9, 783–793 (1997)

    Google Scholar 

  51. L. Canham, C. Reeves, J. Newey, M. Houlton, T. Cox, J.M. Buriak, M. Stewart, Derivatised mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv. Mater. 11, 1505–1507 (1999)

    Google Scholar 

  52. D.M. Reffitt, R. Jugdaohsingh, R.P. Thompson, J.J. Powell, Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J. Inorg. Biochem. 76, 141–147 (1999)

    Google Scholar 

  53. L. Gu, L.E. Ruff, Z. Qin, M. Corr, S.M. Hedrick, M.J. Sailor, Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv. Mater. 24, 3981–3987 (2012)

    Google Scholar 

  54. S. Low, K. Williams, L. Canham, N.H. Voelcker, Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27, 4538–4546 (2006)

    Google Scholar 

  55. S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: current status and future prospects. FASEB J. 19, 311–330 (2005)

    Google Scholar 

  56. J.M. Buriak, Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102, 1271–1308 (2002)

    Google Scholar 

  57. J. Song, M. Sailor, Chemical modification of crystalline porous silicon surfaces. Comment. Inorg. Chem. 21, 69–84 (1999)

    Google Scholar 

  58. M. Lai, G. Parish, J. Dell, Y. Liu, A. Keating, Chemical resistance of porous silicon: photolithographic applications. Phys. Stat. Sol. (C). 8, 1847–1850 (2011)

    Google Scholar 

  59. M. Lai, G. Parish, Y. Liu, J.M. Dell, A.J. Keating, Development of an alkaline-compatible porous-silicon photolithographic process. J. Microelectromech. Syst. 20, 418–423 (2011)

    Google Scholar 

  60. T.D. James, A. Keating, G. Parish, C.A. Musca, Low temperature N2-based passivation technique for porous silicon thin films. Solid State Commun. 149, 1322–1325 (2009)

    Google Scholar 

  61. J. Salonen, V.-P. Lehto, M. Bjorkqvist, E. Laine, L. Niinisto, Studies of thermally-carbonized porous silicon surfaces. Phys. Stat. Sol. (A). 182, 123–126 (2000)

    Google Scholar 

  62. J. Salonen, M. Bjorkqvist, E. Laine, L. Niinisto, Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl. Surf. Sci. 225, 389–394 (2004)

    Google Scholar 

  63. J. Salonen, E. Laine, L. Niinisto, Thermal carbonization of porous silicon surface by acetylene. J. App. Phys. 91, 456–461 (2002)

    Google Scholar 

  64. V.M. Dubin, C. Vieillard, F. Ozanam, J.-N. Chazalviel, Preparation and characterization of surface-modified luminescent porous silicon. Phys. Stat. Sol. (B). 190, 47–52 (1995)

    Google Scholar 

  65. R.C. Anderson, R.S. Muller, C.W. Tobias, Chemical surface modification of porous silicon. J. Electrochem. Soc. 140, 1393–1396 (1993)

    Google Scholar 

  66. M.P. Stewart, J.M. Buriak, Chemical and biological applications of porous silicon technology. Adv. Mater. 12, 859–869 (2000)

    Google Scholar 

  67. R.D. Lowe, E.J. Szili, P. Kirkbride, H. Thissen, G. Siuzdak, N.H. Voelcker, Combined immunocapture and laser desorption/ionization mass spectrometry on porous silicon. Anal. Chem. 82, 4201–4208 (2010)

    Google Scholar 

  68. M.A. Cole, M. Jasieniak, N.H. Voelcker, H. Thissen, R. Horn, H. Griesser, Switchable surface coatings for control over protein adsorption. Biomed. App. Micro. Nanoeng. III, Proc. SPIE. 6416, 6–10 (2006)

    Google Scholar 

  69. M.J. Sweetman, C.J. Shearer, J.G. Shapter, N.H. Voelcker, Dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. Langmuir 27, 9497–9503 (2011)

    Google Scholar 

  70. R.B. Vasani, S.J.P. McInnes, M.A. Cole, A.M.M. Jani, A.V. Ellis, N.H. Voelcker, Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide). Langmuir 27, 7843–7853 (2011)

    Google Scholar 

  71. E. Mäkilä, L.M. Bimbo, M. Kaasalainen, B. Herranz, A.J. Airaksinen, M. Heinonen, E. Kukk, J. Hirvonen, H.A. Santos, J. Salonen, Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28, 14045–14054 (2012)

    Google Scholar 

  72. K.A. Kilian, T. Boecking, J.J. Gooding, The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem. Commun. 14, 630–640 (2009)

    Google Scholar 

  73. N. Kim, P. Laibinis, Derivatization of porous silicon by grignard reagents at room temperature. J. Am. Chem. Soc. 120, 4516–4517 (1998)

    Google Scholar 

  74. J. Bateman, R. Eagling, D. Worrall, B. Horrocks, A. Houlton, Alkylation of porous silicon by direct reaction with alkenes and alkynes. Angew. Chem. Int. Ed. 37, 2638–2685 (1998)

    Google Scholar 

  75. J.M. Buriak, M.P. Stewart, T.W. Geders, M.J. Allen, H.C. Choi, J. Smith, D. Raftery, L.T. Canham, Lewis acid mediated hydrosilylation on porous silicon surfaces. J. Am. Chem. Soc. 121, 11491–11502 (1999)

    Google Scholar 

  76. M.P. Stewart, J.M. Buriak, Photopatterned hydrosilylation on porous silicon. Angew. Chem. Int. Ed. 37, 3257–3260 (1998)

    Google Scholar 

  77. M.J. Sweetman, M. Ronci, S.R. Ghaemi, J.E. Craig, N.H. Voelcker, Porous silicon films micropatterned with bioelements as supports for mammalian cells. Adv. Funct. Mater. 22, 1158–1166 (2012)

    Google Scholar 

  78. I. Lees, H. Lin, C. Canaria, C. Gurtner, M. Sailor, G. Miskelly, Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir 19, 9812–9817 (2003)

    Google Scholar 

  79. R. Boukherroub, A. Petit, A. Loupy, J.-N. Chazalviel, F. Ozanam, Microwave-assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J. Phys. Chem. B 107, 13459–13462 (2003)

    Google Scholar 

  80. L.R. Clements, P.-Y. Wang, F. Harding, W.-B. Tsai, H. Thissen, N.H. Voelcker, Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Phys. Stat. Sol. (A). 208, 1440–1445 (2010)

    Google Scholar 

  81. K.-P.S. Dancil, D.P. Greiner, M.J. Sailor, A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface. J. Am. Chem. Soc. 121, 7925–7930 (1999)

    Google Scholar 

  82. V. Lin, K. Motesharei, K. Dancil, M.J. Sailor, M.R. Ghadiri, A porous silicon-based optical interferometric biosensor. Science 278, 840–843 (1997)

    Google Scholar 

  83. H.R. Hart, S.E. Létant, S.R. Kane, M.Z. Hadi, S.J. Shields, J.G. Reynolds, New method for attachment of biomolecules to porous silicon. Chem. Commun. 322–323 (2003)

    Google Scholar 

  84. J. Drott, K. Lindstrom, L. Rosengren, T. Laurell, Porous silicon as the carrier matrix in microstructured enzyme reactors yeilding high enzyme activities. J. Micromech. Microeng. 7, 14–23 (1997)

    Google Scholar 

  85. T. Laurell, J. Drott, L. Rosengren, K. Lindstrom, Enhanced enzyme activity in silicon integrated enzyme reactors utilizing porous silicon as the coupling matrix. Sensor. Actuat. B: Chem. 31, 161–166 (1996)

    Google Scholar 

  86. E. Secret, K. Smith, V. Dubljevic, E. Moore, P. Macardle, B. Delalat, M.-L. Rogers, T.G. Johns, J.-O. Durand, F. Cunin, N.H. Voelcker, Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Healthcare Mater. 2, 718–727 (2013)

    Google Scholar 

  87. B. Guan, A. Magenau, S. Ciampi, K. Gaus, P.J. Reece, J.J. Gooding, Antibody modified porous silicon microparticles for the selective capture of cells. Bioconjug. Chem. 25, 1282–1289 (2014)

    Google Scholar 

  88. D. Holthausen, R.B. Vasani, S.J.P. McInnes, A.V. Ellis, N.H. Voelcker, Polymerization-amplified optical DNA detection on porous silicon templates. ACS Macro Lett. 1, 919–921 (2012)

    Google Scholar 

  89. S.J.P. McInnes, N.H. Voelcker, Porous silicon-based nanostructured microparticles as degradable supports for solid-phase synthesis and release of oligonucleotides. Nanoscale Res. Lett. 7, 1–10 (2012)

    Google Scholar 

  90. C. Steinem, A. Janshoff, V.S.Y. Lin, N.H. Völcker, M. Reza Ghadiri, DNA hybridization-enhanced porous silicon corrosion: mechanistic investigations and prospect for optical interferometric biosensing. Tetrahedron 60, 11259–11267 (2004)

    Google Scholar 

  91. G. Shtenberg, N. Massad-Ivanir, S. Engin, M. Sharon, L. Fruk, E. Segal, DNA-directed immobilization of horseradish peroxidase onto porous SiO2 optical transducers. Nanoscale Res. Lett. 7, 443 (2012)

    Google Scholar 

  92. S.E. Letant, B.R. Hart, S.R. Kane, M.Z. Hadi, S.J. Shields, J.G. Reynolds, Enzyme immobilization on porous silicon surfaces. Adv. Mater. 16, 689–693 (2004)

    Google Scholar 

  93. G.T. Hermanson, Bioconjugate Techniques (2008), pp. 1–1233

    Google Scholar 

  94. A. Pike, S. Patole, N. Murray, T. Ilyas, B. Connolly, B. Horrocks, A. Houlton, Covalent and non-covalent attachment and patterning of polypyrrole at silicon surfaces. Adv. Mater. 15, 254–257 (2003)

    Google Scholar 

  95. C.B. Gorman, R.J. Petrie, J. Genzer, Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization. Macromolecules 41, 4856–4865 (2008)

    Google Scholar 

  96. S.J.P. McInnes, H. Thissen, N.R. Choudhury, N.H. Voelcker, New biodegradable materials produced by ring opening polymerisation of poly(L-lactide) on porous silicon substrates. J. Colloid Interface Sci. 332, 336–344 (2009)

    Google Scholar 

  97. N. Errien, G. Froyer, G. Louarn, P. Retho, Electrochemical growth of poly(3-dodecylthiophene) into porous silicon layers. Synth. Met. 150, 255–258 (2005)

    Google Scholar 

  98. S. Pace, R.B. Vasani, W. Zhao, S. Perrier, N.H. Voelcker, Photonic porous silicon as a pH sensor. Nanoscale Res. Lett. 9, 420 (2014)

    Google Scholar 

  99. E. Segal, L.A. Perelman, T. Moore, E. Kesselman, M.J. Sailor, Grafting stimuli-responsive polymer brushes to freshly-etched porous silicon. Phys. Stat. Sol. (C). 6, 1717–1720 (2009)

    Google Scholar 

  100. B. Xia, S.-J. Xiao, J. Wang, D.-J. Guo, Stability improvement of porous silicon surface structures by grafting polydimethylsiloxane polymer monolayers. Thin Solid Films 474, 306–309 (2005)

    Google Scholar 

  101. M.S. Yoon, K.H. Ahn, R.W. Cheung, H. Sohn, J.R. Link, F. Cunin, M.J. Sailor, Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization. Chem. Commun. 6, 680–681 (2003)

    Google Scholar 

  102. J. Wu, M.J. Sailor, Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv. Funct. Mater. 19, 733–741 (2009)

    Google Scholar 

  103. S.J.P. McInnes, E.J. Szili, S.A. Al-Bataineh, J. Xu, M.E. Alf, K.K. Gleason, R.D. Short, N.H. Voelcker, Combination of iCVD and porous silicon for the development of a controlled drug delivery system. ACS Appl. Mater. Interfaces 4, 3566–3574 (2012)

    Google Scholar 

  104. E. Climent, R. Martínez-Máñez, Á. Maquieira, F. Sancenón, M.D. Marcos, E.M. Brun, J. Soto, P. Amorós, Antibody-capped mesoporous nanoscopic materials: design of a probe for the selective chromo-fluorogenic detection of finasteride. ChemistryOpen 1, 251–259 (2012)

    Google Scholar 

  105. E.J. Anglin, L. Cheng, W.R. Freeman, M.J. Sailor, Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 60, 1266–1277 (2008)

    Google Scholar 

  106. B.H. King, A. Gramada, J.R. Link, M.J. Sailor, Internally referenced ammonia sensor based on an electrochemically prepared porous SiO2 photonic crystal. Adv. Mater. 19, 4044–4048 (2007)

    Google Scholar 

  107. M.J. Sweetman, N.H. Voelcker, Chemically patterned porous silicon photonic crystals towards internally referenced organic vapour sensors. RSC Adv. 2, 4620–4622 (2012)

    Google Scholar 

  108. C.-C. Wu, M.J. Sailor, Selective functionalization of the internal and the external surfaces of mesoporous silicon by liquid masking. ACS Nano 7, 3158–3167 (2013)

    Google Scholar 

  109. K.A. Kilian, T. Bocking, K. Gaus, J.J. Gooding, Introducing distinctly different chemical functionalities onto the internal and external surfaces of mesoporous materials. Angew. Chem. Int. Ed. 47, 2697–2699 (2008)

    Google Scholar 

  110. B. Guan, S. Ciampi, G. Le Saux, K. Gaus, P.J. Reece, J.J. Gooding, Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using “click” chemistry. Langmuir 27, 328–334 (2011)

    Google Scholar 

  111. J. Wei, J.M. Buriak, G. Siuzdak, Desorption-ionization mass spectrometry on porous silicon. Nature 399, 243–246 (1999)

    Google Scholar 

  112. G. Rong, A. Najmaie, J.E. Sipe, S.M. Weiss, Nanoscale porous silicon waveguide for label-free DNA sensing. Biosens. Bioelectron. 23, 1572–1576 (2008)

    Google Scholar 

  113. B. Wu, G. Rong, J. Zhao, S. Zhang, Y. Zhu, B. He, A nanoscale porous silicon microcavity biosensor for novel label-free tuberculosis antigen-antibody detection. Nano 07, 1250049–1250057 (2012)

    Google Scholar 

  114. T.R. Northen, O. Yanes, M.T. Northen, D. Marrinucci, W. Uritboonthai, J. Apon, S.L. Golledge, A. Nordstrom, G. Siuzdak, Clathrate nanostructures for mass spectrometry. Nature 449, 1033–1037 (2007)

    Google Scholar 

  115. A.M. Rossi, L. Wang, V. Reipa, T.E. Murphy, Porous silicon biosensor for detection of viruses. Biosens. Bioelectron. 23, 741–745 (2007)

    Google Scholar 

  116. S. Chan, Y. Li, L.J. Rothberg, B.L. Miller, P.M. Fauchet, Nanoscale silicon microcavities for biosensing. Mater. Sci. Eng., R 15, 277–282 (2001)

    Google Scholar 

  117. S. Chan, S.R. Horner, P.M. Fauchet, B.L. Miller, Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 123, 11797–11798 (2001)

    Google Scholar 

  118. P.C. Searson, J.M. Macaulay, S.M. Prokes, The formation, morphology, and optical-properties of porous silicon structures. J. Electrochem. Soc. 139, 3373–3378 (1992)

    Google Scholar 

  119. W. Theiss, Optical properties of porous silicon. Surf. Sci. Rep. 29, 95–192 (1997)

    Google Scholar 

  120. M. Archer, M. Christophersen, P.M. Fauchet, Macroporous silicon electrical sensor for DNA hybridization detection. Biomed. Microdevices 6, 203–211 (2004)

    Google Scholar 

  121. J. Lopez-Garcia, R.J. Martín-Palma, M. Manso, J.M. Martínez-Duart, Porous silicon based structures for the electrical biosensing of glucose. Sensor. Actuat. B: Chem. 126, 82–85 (2007)

    Google Scholar 

  122. O. Meskini, A. Abdelghani, A. Tlili, R. Mgaieth, N. Jaffrezic-Renault, C. Martelet, Porous silicon as functionalized material for immunosensor application. Talanta 71, 1430–1433 (2007)

    Google Scholar 

  123. M.-J. Song, D.-H. Yun, N.-K. Min, S.-I. Hong, Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode. J. Biosci. Bioeng. 103, 32–37 (2007)

    Google Scholar 

  124. A. Jane, R. Dronov, A. Hodges, N.H. Voelcker, Porous silicon biosensors on the advance. Trends Biotechnol. 27, 230–239 (2009)

    Google Scholar 

  125. S. Dhanekar, S. Jain, Porous silicon biosensor: current status. Biosens. Bioelectron. 41, 54–64 (2013)

    Google Scholar 

  126. B. Gupta, Y. Zhu, B. Guan, P.J. Reece, J.J. Gooding, Functionalised porous silicon as a biosensor: emphasis on monitoring cells in vivo and in vitro. Analyst 138, 3593–3615 (2013)

    Google Scholar 

  127. J. Charrier, M. Dribek, Theoretical study of the factor of merit of porous silicon based optical biosensors. J. Appl. Phys. 107, 044905 (2010)

    Google Scholar 

  128. H. Ouyang, M. Christophersen, R. Viard, B.L. Miller, P.M. Fauchet, Macroporous silicon microcavities for macromolecule detection. Adv. Funct. Mater. 15, 1851–1859 (2005)

    Google Scholar 

  129. J. Chapron, S.A. Alekseev, V. Lysenko, V.N. Zaitsev, D. Barbier, Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red Rugate filters. Sensor. Actuat. B: Chem. 120, 706–711 (2007)

    Google Scholar 

  130. M. Hiraoui, L. Haji, M. Guendouz, N. Lorrain, A. Moadhen, M. Oueslati, Towards a biosensor based on anti resonant reflecting optical waveguide fabricated from porous silicon. Biosens. Bioelectron. 36, 212–216 (2012)

    Google Scholar 

  131. H. Ouyang, L.A. DeLouise, B.L. Miller, P.M. Fauchet, Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors. Anal. Chem. 79, 1502–1506 (2007)

    Google Scholar 

  132. L.A. DeLouise, P.M. Kou, B.L. Miller, Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights into biosensor sensitivity. Anal. Chem. 77, 3222–3230 (2005)

    Google Scholar 

  133. M.M. Orosco, C. Pacholski, M.J. Sailor, Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat. Nanotech. 4, 255–258 (2009)

    Google Scholar 

  134. G. Di Francia, V. La Ferrara, S. Manzo, S. Chiavarini, Towards a label-free optical porous silicon DNA sensor. Biosens. Bioelectron. 21, 661–665 (2005)

    Google Scholar 

  135. L. De Stefano, L. Rotiroti, I. Rendina, L. Moretti, V. Scognamiglio, M. Rossi, S. D’Auria, Porous silicon-based optical microsensor for the detection of l-glutamine. Biosens. Bioelectron. 21, 1664–1667 (2006)

    Google Scholar 

  136. L.M. Bonanno, L.A. DeLouise, Whole blood optical biosensor. Biosens. Bioelectron. 23, 444–448 (2007)

    Google Scholar 

  137. V.M. Starodub, L.L. Fedorenko, A.P. Sisetskiy, N.F. Starodub, Control of myoglobin level in a solution by an immune sensor based on the photoluminescence of porous silicon. Sensor. Actuat. B: Chem. 58, 409–414 (1999)

    Google Scholar 

  138. C.K. Tsang, T.L. Kelly, M.J. Sailor, Y.Y. Li, Highly stable porous silicon-carbon composites as label-free optical biosensors. ACS Nano 6, 10546–10554 (2012)

    Google Scholar 

  139. F.S.H. Krismastuti, W.L.A. Brooks, M.J. Sweetman, B.S. Sumerlin, N.H. Voelcker, A photonic glucose biosensor for chronic wound prognostics. J. Mater. Chem. B 2, 3972–3983 (2014)

    Google Scholar 

  140. A. Ressine, S. Ekström, G. Marko-Varga, T. Laurell, Macro-/nanoporous silicon as a support for high-performance protein microarrays. Anal. Chem. 75, 6968–6974 (2003)

    Google Scholar 

  141. S. Lee, S. Kim, J. Malm, O.C. Jeong, H. Lilja, T. Laurell, Improved porous silicon microarray based prostate specific antigen immunoassay by optimized surface density of the capture antibody. Anal. Chim. Acta 796, 108–114 (2013)

    Google Scholar 

  142. D. Finnskog, A. Ressine, T. Laurell, G. Marko-Varga, Integrated protein microchip assay with dual fluorescent- and MALDI read-out. J. Proteome Res. 3, 988–994 (2004)

    Google Scholar 

  143. A. Ressine, I. Corin, K. Järås, G. Guanti, C. Simone, G. Marko-Varga, T. Laurell, Porous silicon surfaces—a candidate substrate for reverse protein arrays in cancer biomarker detection. Electrophoresis 28, 4407–4415 (2007)

    Google Scholar 

  144. K. Järås, A. Ressine, E. Nilsson, J. Malm, G. Marko-Varga, H. Lilja, T. Laurell, Reverse-phase versus sandwich antibody microarray, technical comparison from a clinical perspective. Anal. Chem. 79, 5817–5825 (2007)

    Google Scholar 

  145. K. Järås, B. Adler, A. Tojo, J. Malm, G. Marko-Varga, H. Lilja, T. Laurell, Porous silicon antibody microarrays for quantitative analysis: measurement of free and total PSA in clinical plasma samples. Clin. Chim. Acta 414, 76–84 (2012)

    Google Scholar 

  146. K. Järås, A.A. Tajudin, A. Ressine, T. Soukka, G. Marko-Varga, A. Bjartell, J. Malm, T. Laurell, H. Lilja, ENSAM: Europium nanoparticles for signal enhancement of antibody microarrays on nanoporous silicon. J. Proteome Res. 7, 1308–1314 (2008)

    Google Scholar 

  147. A. Lenshof, A. Ahmad-Tajudin, K. Järås, A.-M. Sward-Nilsson, L. Aberg, G. Marko-Varga, J. Malm, H. Lilja, T. Laurell, Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 81, 6030–6037 (2009)

    Google Scholar 

  148. S. Lee, E. Silajdzic, H. Yang, M. Bjorkqvist, S. Kim, O.C. Jeong, O. Hansson, T. Laurell, A porous silicon immunoassay platform for fluorometric determination of alpha-synuclein in human cerebrospinal fluid. Microchim. Acta 181, 1143–1149 (2014)

    Google Scholar 

  149. S.A. Trauger, E.P. Go, Z.X. Shen, J.V. Apon, B.J. Compton, E. Bouvier, M.G. Finn, G. Siuzdak, High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal. Chem. 76, 4484–4489 (2004)

    Google Scholar 

  150. M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60, 2299–2301 (1988)

    Google Scholar 

  151. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988)

    Google Scholar 

  152. Z.X. Shen, J.J. Thomas, C. Averbuj, K.M. Broo, M. Engelhard, J.E. Crowell, M.G. Finn, G. Siuzdak, Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal. Chem. 73, 612–619 (2001)

    Google Scholar 

  153. G.H. Luo, Y. Chen, G. Siuzdak, A. Vertes, Surface modification and laser pulse length effects on internal energy transfer in DIOS. J. Phys. Chem. B 109, 24450–24456 (2005)

    Google Scholar 

  154. T.R. Northen, H.-K. Woo, M.T. Northen, A. Nordstroem, W. Uritboonthail, K.L. Turner, G. Siuzdak, High surface area of porous silicon drives desorption of intact molecules. J. Am. Soc. Mass Spectrom. 18, 1945–1949 (2007)

    Google Scholar 

  155. Q. Liu, L. He, Quantitative study of solvent and surface effects on analyte ionization in desorption ionization on silicon (DIOS) mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 8–13 (2008)

    Google Scholar 

  156. R.A. Kruse, X.L. Li, P.W. Bohn, J.V. Sweedler, Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon. Anal. Chem. 73, 3639–3645 (2001)

    Google Scholar 

  157. Z.X. Shen, E.P. Go, A. Gamez, J.V. Apon, V. Fokin, M. Greig, M. Ventura, J.E. Crowell, O. Blixt, J.C. Paulson, R.C. Stevens, M.G. Finn, G. Siuzdak, A mass spectrometry plate reader: monitoring enzyme activity and inhibition with a desorption/ionization on silicon (DIOS) platform. ChemBioChem 5, 921–927 (2004)

    Google Scholar 

  158. O. Yanes, H.-K. Woo, T.R. Northen, S.R. Oppenheimer, L. Shriver, J. Apon, M.N. Estrada, M.J. Potchoiba, R. Steenwyk, M. Manchester, G. Siuzdak, Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal. Chem. 81, 2969–2975 (2009)

    Google Scholar 

  159. J.J. Thomas, Z.X. Shen, J.E. Crowell, M.G. Finn, G. Siuzdak, Desorption/ionization on silicon (DIOS): a diverse mass spectrometry platform for protein characterization. PNAS 98, 4932–4937 (2001)

    Google Scholar 

  160. E.P. Go, W. Uritboonthai, J.V. Apon, S.A. Trauger, A. Nordstrom, G. O’Maille, S.M. Brittain, E.C. Peters, G. Siuzdak, Selective metabolite and peptide capture/mass detection using fluorous affinity tags. J. Proteome Res. 6, 1492–1499 (2007)

    Google Scholar 

  161. D. Finnskog, K. Järås, A. Ressine, J. Malm, G. Marko-Varga, H. Lilja, T. Laurell, High-speed biomarker identification utilizing porous silicon nanovial arrays and MALDI-TOF mass spectrometry. Electrophoresis 27, 1093–1103 (2006)

    Google Scholar 

  162. D.B. Wall, J.W. Finch, S.A. Cohen, Comparison of desorption/ionization on silicon (DIOS) time-of-flight and liquid chromatography/tandem mass spectrometry for assaying enzyme-inhibition reactions. Rapid Commun. Mass Spectrom. 18, 1482–1486 (2004)

    Google Scholar 

  163. S.Y. Xu, C.S. Pan, L.G. Hu, Y. Zhang, Z. Guo, X. Li, H.F. Zou, Enzymatic reaction of the immobilized enzyme on porous silicon studied by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 25, 3669–3676 (2004)

    Google Scholar 

  164. M. Ronci, D. Rudd, T. Guinan, K. Benkendorff, N.H. Voelcker, Mass spectrometry imaging on porous silicon: investigating the distribution of bioactives in marine mollusc tissues. Anal. Chem. 84, 8996–9001 (2012)

    Google Scholar 

  165. M.P. Greving, G.J. Patti, G. Siuzdak, Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal. Chem. 83, 2–7 (2011)

    Google Scholar 

  166. K.P. Law, Laser desorption/ionization mass spectrometry on nanostructured semiconductor substrates: DIOS and QuickMass. Int. J. Mass Spectrom. 290, 72–84 (2010)

    Google Scholar 

  167. A.Y. Lim, J. Ma, Y.C.F. Boey, Development of nanomaterials for SALDI-MS analysis in forensics. Adv. Mater. 24, 4211–4216 (2012)

    Google Scholar 

  168. R.D. Lowe, G.E. Guild, P. Harpas, P. Kirkbride, P. Hoffmann, N.H. Voelcker, H. Kobus, Rapid drug detection in oral samples by porous silicon assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3543–3548 (2009)

    Google Scholar 

  169. A. Kraj, J. Jarzebinska, A. Gorecka-Drzazga, J. Dziuban, J. Silberring, Identification of catecholamines in the immune system by desorption/ionization on silicon. Rapid Commun. Mass Spectrom. 20, 1969–1972 (2006)

    Google Scholar 

  170. S. Okuno, Y. Wada, Measurement of serum salicylate levels by solid-phase extraction and desorption/ionization on silicon mass spectrometry. J. Mass Spectrom. 40, 1000–1004 (2005)

    Google Scholar 

  171. L. Hu, S. Xu, C. Pan, H. Zou, G. Jiang, Preparation of a biochip on porous silicon and application for label-free detection of small molecule-protein interactions. Rapid Commun. Mass Spectrom. 21, 1277–1281 (2007)

    Google Scholar 

  172. Q. Liu, Y. Xiao, C. Pagan-Miranda, Y.M. Chiu, L. He, Metabolite imaging using matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry (ME-SALDI-MS). J. Am. Soc. Mass Spectrom. 20, 80–88 (2009)

    Google Scholar 

  173. T.R. Northen, J.-C. Lee, L. Hoang, J. Raymond, D.-R. Hwang, S.M. Yannone, C.-H. Wong, G. Siuzdak, A nanostructure-initiator mass spectrometry-based enzyme activity assay. PNAS 105, 3678–3683 (2008)

    Google Scholar 

  174. H.-K. Woo, T.R. Northen, O. Yanes, G. Siuzdak, Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis. Nat. Protoc. 3, 1341–1349 (2008)

    Google Scholar 

  175. G.J. Patti, H.-K. Woo, O. Yanes, L. Shriver, D. Thomas, W. Uritboonthai, J.V. Apon, R. Steenwyk, M. Manchester, G. Siuzdak, Detection of carbohydrates and steroids by cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for biofluid analysis and tissue imaging. Anal. Chem. 82, 121–128 (2010)

    Google Scholar 

  176. R.M. Caprioli, T.B. Farmer, J. Gile, Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997)

    Google Scholar 

  177. P. Chaurand, S.A. Schwartz, R.M. Caprioli, Profiling and imaging proteins in tissue sections by MS. Anal. Chem. 76, 86A–93A (2004)

    Google Scholar 

  178. J. Franck, K. Arafah, M. Elayed, D. Bonnel, D. Vergara, A. Jacquet, D. Vinatier, M. Wisztorski, R. Day, I. Fournier, M. Salzet, MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Mol. Cell. Proteomics 8, 2023–2033 (2009)

    Google Scholar 

  179. A. Thomas, P. Chaurand, Advances in tissue section preparation for MALDI imaging MS. Bioanalysis 6, 967–982 (2014)

    Google Scholar 

  180. L.A. McDonnell, R.M.A. Heeren, Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007)

    Google Scholar 

  181. R.A. Kruse, S.S. Rubakhin, E.V. Romanova, P.W. Bohn, J.V. Sweedler, Direct assay of Aplysia tissues and cells with laser desorption/ionization mass spectrometry on porous silicon. J. Mass Spectrom. 36, 1317–1322 (2001)

    Google Scholar 

  182. Q. Liu, Z. Guo, L. He, Mass spectrometry imaging of small molecules using desorption/ionization on silicon. Anal. Chem. 79, 3535–3541 (2007)

    Google Scholar 

  183. A. Roempp, B. Spengler, Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 139, 759–783 (2013)

    Google Scholar 

  184. R.J.A. Goodwin, S.R. Pennington, A.R. Pitt, Protein and peptides in pictures: imaging with MALDI mass spectrometry. Proteomics 8, 3785–3800 (2008)

    Google Scholar 

  185. B. Spengler, M. Hubert, Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J. Am. Soc. Mass Spectrom. 13, 735–748 (2002)

    Google Scholar 

  186. R. Calavia, F.E. Annanouch, X. Correig, O. Yanes, Nanostructure initiator mass spectrometry for tissue imaging in metabolomics: future prospects and perspectives. J Proteomics 75, 5061–5068 (2012)

    Google Scholar 

  187. R.M. Sturm, T. Greer, R. Chen, B. Hensen, L. Li, Comparison of NIMS and MALDI platforms for neuropeptide and lipid mass spectrometric imaging in C. borealis brain tissue. Anal. Methods 5, 1623–1628 (2013)

    Google Scholar 

  188. D.Y. Lee, V. Platt, B. Bowen, K. Louie, C.A. Canaria, C.T. McMurray, T. Northen, Resolving brain regions using nanostructure initiator mass spectrometry imaging of phospholipids. Integr. Biol. 4, 693–699 (2012)

    Google Scholar 

  189. K. Deng, T.E. Takasuka, R. Heins, X. Cheng, L.F. Bergeman, J. Shi, R. Aschenbrener, S. Deutsch, S. Singh, K.L. Sale, B.A. Simmons, P.D. Adams, A.K. Singh, B.G. Fox, T.R. Northen, Rapid kinetic characterization of glycosyl hydrolases based on oxime derivatization and nanostructure-initiator mass spectrometry (NIMS). ACS Chem. Biol. 9, 1470–1479 (2014)

    Google Scholar 

  190. S.S. Rubakhin, J.C. Jurchen, E.B. Monroe, J.V. Sweedler, Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Discovery Today 10, 823–837 (2005)

    Google Scholar 

  191. G.R. Castro, B. Panilaitis, D.L. Kaplan, Emulsan, a tailorable biopolymer for controlled release. Bioresour. Technol. 99, 4566–4571 (2008)

    Google Scholar 

  192. S.T. Andreadis, D.J. Geer, Biomimetic approaches to protein and gene delivery for tissue regeneration. Trends Biotechnol. 24, 331–337 (2006)

    Google Scholar 

  193. C. Elvira, A. Gallardo, J. San Roman, A. Cifuentes, Covalent polymer-drug conjugates. Molecules 10, 114–125 (2005)

    Google Scholar 

  194. S. Sharma, A. Jasper Nijdam, P. Sinha, R. Walczak, X. Liu, M. Cheng, M. Ferrari, Controlled-release microchips. Expert Opin. Drug Deliv. 3, 379–394 (2006)

    Google Scholar 

  195. K. Soppimath, T. Aminabhavi, A. Kulkarni, W. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 70, 1–20 (2001)

    Google Scholar 

  196. K.C. Wood, J.Q. Boedicker, D.M. Lynn, P.T. Hammond, Tunable drug release from hydrolytically degradable layer-by-layer thin films. Langmuir 21, 1603–1609 (2005)

    Google Scholar 

  197. T. Tsukagoshi, Y. Kondo, N. Yoshino, Preparation of thin polymer films with controlled drug release. Colloids Surf., B 57, 219–225 (2007)

    Google Scholar 

  198. L.M. Bimbo, M. Sarparanta, H.A. Santos, A.J. Airaksinen, E. Mäkilä, T. Laaksonen, L. Peltonen, V.-P. Lehto, J. Hirvonen, J. Salonen, Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4, 3023–3032 (2010)

    Google Scholar 

  199. M. Kovalainen, J. Mönkäre, M. Kaasalainen, J. Riikonen, V.-P. Lehto, J. Salonen, K.-H. Herzig, K. Järvinen, Development of porous silicon nanocarriers for parenteral peptide delivery. Mol. Pharm. 10, 353–359 (2013)

    Google Scholar 

  200. H. Shen, J. You, G. Zhang, A. Ziemys, Q. Li, L. Bai, X. Deng, D.R. Erm, X. Liu, C. Li, M. Ferrari, Cooperative, nanoparticle-enabled thermal therapy of breast cancer. Adv. Healthcare Mater. 1, 84–89 (2012)

    Google Scholar 

  201. R. Xu, Y. Huang, J. Mai, G. Zhang, X. Guo, X. Xia, E.J. Koay, G. Qin, D.R. Erm, Q. Li, X. Liu, M. Ferrari, H. Shen, Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small 9, 1799–1808 (2013)

    Google Scholar 

  202. J. Salonen, A.M. Kaukonen, J. Hirvonen, V.-P. Lehto, Mesoporous silicon in drug delivery applications. J. Pharm. Sci. 97, 632–653 (2008)

    Google Scholar 

  203. C.A. Prestidge, T.J. Barnes, C.-H. Lau, C. Barnett, A. Loni, L. Canham, Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin. Drug Deliv. 4, 101–110 (2007)

    Google Scholar 

  204. J. Chhablani, A. Nieto, H. Hou, E.C. Wu, W.R. Freeman, M.J. Sailor, L. Cheng, Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. Invest. Ophthalmol. Vis. Sci. 54, 1268–1279 (2013)

    Google Scholar 

  205. E.J. Anglin, M.P. Schwartz, V.P. Ng, L.A. Perelman, M.J. Sailor, Engineering the chemistry and nanostructure of porous silicon fabry-pérot films for loading and release of a steroid. Langmuir 20, 11264–11269 (2004)

    Google Scholar 

  206. L. Vaccari, D. Canton, N. Zaffaroni, R. Villa, M. Tormen, E. di Fabrizio, Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent. Microelectron. Eng. 83, 1598–1601 (2006)

    Google Scholar 

  207. J.S. Andrew, E.J. Anglin, E.C. Wu, M.Y. Chen, L. Cheng, W.R. Freeman, M.J. Sailor, Sustained release of a monoclonal antibody from electrochemically prepared mesoporous silicon oxide. Adv. Funct. Mater. 20, 4168–4174 (2010)

    Google Scholar 

  208. N.L. Fry, G.R. Boss, M.J. Sailor, Oxidation-induced trapping of drugs in porous silicon microparticles. Chem. Mater. 26, 2758–2764 (2014)

    Google Scholar 

  209. S.M. Haidary, E.P. Córcoles, N.K. Ali, Nanoporous silicon as drug delivery systems for cancer therapies. J. Nanomater 2012, 1–15 (2012)

    Google Scholar 

  210. L.M. Bimbo, E. Mäkilä, T. Laaksonen, V.-P. Lehto, J. Salonen, J. Hirvonen, H.A. Santos, Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32, 2625–2633 (2011)

    Google Scholar 

  211. J. Salonen, L. Laitinen, A. Kaukonen, J. Tuura, M. Bjorkqvist, T. Heikkila, K. Vaha-Heikkila, J. Hirvonen, V.-P. Lehto, Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J. Controlled Release 108, 362–374 (2005)

    Google Scholar 

  212. A. Foraker, R. Walcazak, M. Cohen, T. Boiarski, C. Grove, P. Swaan, Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm. Res. 20, 110–116 (2003)

    Google Scholar 

  213. C.-H. Lee, L.-W. Lo, C.-Y. Mou, C.-S. Yang, Synthesis and characterization of positive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti-inflammatory drug. Adv. Funct. Mater. 18, 3283–3292 (2008)

    Google Scholar 

  214. L.A. Perelman, C. Pacholski, Y.Y. Li, M.S. VanNieuwenhze, M.J. Sailor, pH-triggered release of vancomycin from protein-capped porous silicon films. Nanomedicine 3, 31–43 (2008)

    Google Scholar 

  215. H. Hou, A. Nieto, F. Ma, W.R. Freeman, M.J. Sailor, L. Cheng, Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J. Controlled Release 178, 46–54 (2014)

    Google Scholar 

  216. M. Kilpeläinen, J. Mönkäre, M.A. Vlasova, J. Riikonen, V.-P. Lehto, J. Salonen, K. Järvinen, K.-H. Herzig, Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery. Eur. J. Pharm. Biopharm. 77, 20–25 (2011)

    Google Scholar 

  217. E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M.M.-C. Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari, Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotech. 3, 151–157 (2008)

    Google Scholar 

  218. M.P. Schwartz, A.M. Derfus, S.D. Alvarez, S.N. Bhatia, M.J. Sailor, The smart petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 22, 7084–7090 (2006)

    Google Scholar 

  219. L.A. DeLouise, P.M. Fauchet, B.L. Miller, A.A. Pentland, Hydrogel-supported optical-microcavity sensors. Adv. Mater. 17, 2199–2203 (2005)

    Google Scholar 

  220. I. Batra, J.L. Coffer, L.T. Canham, Electronically-responsive delivery from a calcified mesoporous silicon structure. Biomed. Microdevices 8, 93–97 (2006)

    Google Scholar 

  221. H. Tsuji, K. Sumida, Poly(L-lactide): v. effects of storage in swelling solvents on physical properties and structure of poly(L-lactide). J. Appl. Polym. Sci. 79, 1582–1589 (2001)

    Google Scholar 

  222. A. Hatefi, D. Knight, B. Amsden, A biodegradable injectable thermoplastic for localised camptothecin delivery. J. Pharm. Sci. 93, 1195–1204 (2004)

    Google Scholar 

  223. K. Nan, F. Ma, H. Hou, W.R. Freeman, M.J. Sailor, L. Cheng, Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater. 10, 3505–3512 (2014)

    Google Scholar 

  224. T.R. Dargaville, B.L. Farrugia, J.A. Broadbent, S. Pace, Z. Upton, N.H. Voelcker, Sensors and imaging for wound healing: a review. Biosens. Bioelectron. 41, 30–42 (2013)

    Google Scholar 

  225. S. Pace, R.B. Vasani, F. Cunin, N.H. Voelcker, Study of the optical properties of a thermoresponsive polymer grafted onto porous silicon scaffolds. New J. Chem. 37, 228–235 (2012)

    Google Scholar 

  226. P. Mukherjee, M.A. Whitehead, R.A. Senter, D. Fan, J.L. Coffer, L.T. Canham, Biorelevant mesoporous silicon/polymer composites: directed assembly, disassembly, and controlled release. Biomed. Microdevices 8, 9–15 (2006)

    Google Scholar 

  227. S.J.P. McInnes, Y. Irani, K.A. Williams, N.H. Voelcker, Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine 7, 995–1016 (2012)

    Google Scholar 

  228. A.M. Kaukonen, L. Laitinen, J. Salonen, J. Tuura, Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. Eur. J. Pharm. Biopharm. (2007)

    Google Scholar 

  229. R.E. Serda, B. Godin, E. Blanco, C. Chiappini, M. Ferrari, Multi-stage delivery nano-particle systems for therapeutic applications. Biochim. Biophys. Acta Gen. Subj. 1810, 317–329 (2011)

    Google Scholar 

  230. R.E. Serda, J. Gu, R.C. Bhavane, X. Liu, C. Chiappini, P. Decuzzi, M. Ferrari, The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials 30, 2440–2448 (2009)

    Google Scholar 

  231. R.E. Serda, A. Mack, M. Pulikkathara, A.M. Zaske, C. Chiappini, J.R. Fakhoury, D. Webb, B. Godin, J.L. Conyers, X.W. Liu, J.A. Bankson, M. Ferrari, Cellular association and assembly of a multistage delivery system. Small 6, 1329–1340 (2010)

    Google Scholar 

  232. R.E. Serda, A. Mack, A.L. van de Ven, S. Ferrati, K. Dunner Jr, B. Godin, C. Chiappini, M. Landry, L. Brousseau, X. Liu, A.J. Bean, M. Ferrari, Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. Small 6, 2691–2700 (2010)

    Google Scholar 

  233. R.E. Serda, S. Ferrati, B. Godin, E. Tasciotti, X. Liu, M. Ferrari, Mitotic trafficking of silicon microparticles. Nanoscale 1, 250–259 (2009)

    Google Scholar 

  234. R. Serda, Particle platforms for cancer immunotherapy. Int. J. Nanomed. 8, 1683–1696 (2013)

    Google Scholar 

  235. R.E. Serda, C. Chiappini, D. Fine, E. Tasciotti, M. Ferrari, Porous silicon particles for imaging and therapy of cancer. Nanotechnol. Life Sci. (2009)

    Google Scholar 

  236. A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos, J.O. Martinez, B.S. Brown, S.Z. Khaled, I.K. Yazdi, M.V. Enzo, L. Isenhart, M. Ferrari, E. Tasciotti, Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotech. 8, 61–68 (2013)

    Google Scholar 

  237. N.H. Alsharif, C.E.M. Berger, S.S. Varanasi, Y. Chao, B.R. Horrocks, H.K. Datta, Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis. Small 5, 221–228 (2009)

    Google Scholar 

  238. Y. Koh, S. Jang, J. Kim, S. Kim, Y. Ko, S. Cho, H. Sohn, DBR PSi/PMMA composite materials for smart patch application. Colloids Surf. A: Physicochem. Eng. Aspects 313–314, 328–331 (2008)

    Google Scholar 

  239. A.M. Minino, S.L. Murphy, J. Xu, K.D. Kochanek, Deaths: final data for 2008. Nat. Vital Stat. Rep. 59, 1–127 (2012)

    Google Scholar 

  240. Y. Wakai, J. Matsui, K. Koizumi, S. Tsunoda, H. Makimoto, I. Ohizumi, K. Taniguchi, S. Kaiho, H. Saito, N. Utoguchi, Y. Tsutsumi, S. Nakagawa, Y. Ohsugi, T. Mayumi, Effective cancer targeting using an anti-tumor tissue vascular endothelium-specific monoclonal antibody (TES-23). Jpn. J. Cancer Res. 91, 1319–1325 (2000)

    Google Scholar 

  241. W.R. Sanhai, J.H. Sakamoto, R. Canady, M. Ferrari, Seven challenges for nanomedicine. Nat. Nanotech. 3, 1–4 (2008)

    Google Scholar 

  242. Y.H. Bae, K. Park, Targeted drug delivery to tumors: myths, reality and possibility. J. Controlled Release 153, 198–205 (2011)

    Google Scholar 

  243. E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188, 759–768 (2010)

    Google Scholar 

  244. R.K. Jain, Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng. 1, 241–263 (1999)

    Google Scholar 

  245. L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. (2012)

    Google Scholar 

  246. O.H. Aina, R. Liu, J.L. Sutcliffe, J. Marik, C.X. Pan, K.S. Lam, From combinatorial chemistry to cancer-targeting peptides. Mol. Pharm. 4, 631–651 (2007)

    Google Scholar 

  247. O.H. Aina, T.C. Sroka, M.-L. Chen, K.S. Lam, Therapeutic cancer targeting peptides. Biopolymers 66, 184–199 (2002)

    Google Scholar 

  248. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P.W. Kantoff, R. Langer, O.C. Farokhzad, Quantum dot—aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007)

    Google Scholar 

  249. V. Lebret, L. Raehm, J.-O. Durand, M. Smaïhi, M.H.V. Werts, M. Blanchard-Desce, D. Méthy-Gonnod, C. Dubernet, Folic acid-targeted mesoporous silica nanoparticles for two-photon fluorescence. J. Biomed. Nanotechnol. 6, 176–180 (2010)

    Google Scholar 

  250. M. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, I. Basile, M. Maynadier, O. Vaillant, O. Mongin, M. Blanchard-Desce, A. Morère, M. Garcia, J.-O. Durand, L. Raehm, Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew. Chem. Int. Ed. 50, 11425–11429 (2011)

    Google Scholar 

  251. H.A. Santos, L.M. Bimbo, B. Herranz, M.-A. Shahbazi, J. Hirvonen, J. Salonen, Nanostructured porous silicon in preclinical imaging: moving from bench to bedside. J. Mater. Res. 28, 152–164 (2012)

    Google Scholar 

  252. C. Hong, C. Lee, In vitro cell tests of pancreatic malignant tumor cells by photothermotherapy based on DMSO porous silicon colloids. Laser Med. Sci. 29, 221–223 (2014)

    Google Scholar 

  253. E. Secret, M. Maynadier, A. Gallud, A. Chaix, E. Bouffard, M. Gary-Bobo, N. Marcotte, O. Mongin, El, K. Cheikh, V. Hugues, M. Auffan, C. Frochot, A. Morère, P. Maillard, M. Blanchard-Desce, M.J. Sailor, M. Garcia, J.-O. Durand, F. Cunin, Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy. Adv. Mater. 26, 7643–7648 (2014)

    Google Scholar 

  254. A.S.-W. Goh, A.Y.-F. Chung, R.H.-G. Lo, T.-N. Lau, S.W.-K. Yu, M. Chng, S. Satchithanantham, S.L.-E. Loong, D.C.-E. Ng, B.-C. Lim, S. Connor, P.K.-H. Chow, A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device—a first-in-man study. Int. J. Radiat. Oncol. Biol. Phys. 67, 786–792 (2007)

    Google Scholar 

  255. L.C. Kennedy, L.R. Bickford, N.A. Lewinski, A.J. Coughlin, Y. Hu, E.S. Day, J.L. West, R.A. Drezek, A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011)

    Google Scholar 

  256. D.K. Chatterjee, P. Diagaradjane, S. Krishnan, Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2, 1001–1014 (2011)

    Google Scholar 

  257. C. Hong, J. Lee, M. Son, S.S. Hong, C. Lee, In-vivo cancer cell destruction using porous silicon nanoparticles. Anticancer Drugs 22, 971–977 (2011)

    Google Scholar 

  258. C. Hong, J. Lee, H. Zheng, S.S. Hong, C. Lee, Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res. Lett. 6, 321 (2011)

    Google Scholar 

  259. P. Puvanakrishnan, J. Park, D. Chatterjee, S. Krishnan, J.W. Tunnell, In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int. J. Nanomed. 7, 1251–1258 (2012)

    Google Scholar 

  260. M. Ma, H. Chen, Y. Chen, X. Wang, F. Chen, X. Cui, J. Shi, Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33, 989–998 (2012)

    Google Scholar 

  261. C.A. Robertson, D.H. Evans, H. Abrahamse, Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B 96, 1–8

    Google Scholar 

  262. L.T. Canham, D. Ferguson, Porous silicon in brachytherapy, in Handbook of Porous Silicon, ed. by L.T. Canham (2014)

    Google Scholar 

  263. K. Zhang, S.L.E. Loong, S. Connor, S.W.K. Yu, S.-Y. Tan, R.T.H. Ng, K.M. Lee, L. Canham, P.K.H. Chow, Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin. Cancer Res. 11, 7532–7537 (2005)

    Google Scholar 

  264. A. Gizzatov, C. Stigliano, J.S. Ananta, R. Sethi, R. Xu, A. Guven, M. Ramirez, H. Shen, A. Sood, M. Ferrari, L.J. Wilson, X. Liu, P. Decuzzi, Cancer Lett. 352, 1–5 (2014)

    Google Scholar 

  265. A.M. Kallinen, M.P. Sarparanta, D. Liu, E.M. Mäkilä, J.J. Salonen, J.T. Hirvonen, H.A. Santos, A.J. Airaksinen, In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging. Mol. Pharm. 11, 2876–2886 (2014)

    Google Scholar 

  266. M. Sarparanta, L.M. Bimbo, J. Rytkönen, E. Mäkilä, T.J. Laaksonen, P. Laaksonen, M. Nyman, J. Salonen, M.B. Linder, J. Hirvonen, H.A. Santos, A.J. Airaksinen, Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol. Pharm. 9, 654–663 (2012)

    Google Scholar 

  267. A.L. van de Ven, P. Kim, O. Haley, J.R. Fakhoury, G. Adriani, J. Schmulen, P. Moloney, F. Hussain, M. Ferrari, X. Liu, S.-H. Yun, P. Decuzzi, Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J. Controlled Release 158, 148–155 (2012)

    Google Scholar 

  268. J. Niu, X. Wang, J. Lv, Y. Li, B. Tang, Luminescent nanoprobes for in-vivo bioimaging. Trends Anal. Chem. 58, 112–119 (2014)

    Google Scholar 

  269. D. Gallach, G.R. Sanchez, A.M. Noval, M.M. Silvan, G. Ceccone, R.J.M. Palma, V.T. Costa, J.M.M. Duart, Materials science and engineering B. Mater. Sci. Eng., B 169, 123–127 (2010)

    Google Scholar 

  270. C. Chiappini, E. Tasciotti, J.R. Fakhoury, D. Fine, L. Pullan, Y.-C. Wang, L. Fu, X. Liu, M. Ferrari, Tailored porous silicon microparticles: fabrication and properties. ChemPhysChem 11, 1029–1035 (2010)

    Google Scholar 

  271. M. Hernandez, G. Recio, R.J. Martin-Palma, J.V. Garcia-Ramos, C. Domingo, P. Sevilla, Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon. Nanoscale Res. Lett. 7, 364–370

    Google Scholar 

  272. J.S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R.E. Serda, R. Krishnamurthy, R. Muthupillai, R.D. Bolskar, L. Helm, M. Ferrari, L.J. Wilson, P. Decuzzi, Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat. Nanotech. 5, 815–821 (2010)

    Google Scholar 

  273. T. Nissinen, S. Näkki, M. Latikka, M. Heinonen, T. Liimatainen, W. Xu, R.H.A. Ras, O. Gröhn, J. Riikonen, V.-P. Lehto, Facile synthesis of biocompatible superparamagnetic mesoporous nanoparticles for imageable drug delivery. Micropor. Mesopor. Mat. 195, 2–8 (2014)

    Google Scholar 

  274. M. Sarparanta, E. Mäkilä, T. Heikkila, J. Salonen, E. Kukk, V.-P. Lehto, H.A. Santos, J. Hirvonen, A.J. Airaksinen, 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol. Pharm. 8, 1799–1806 (2011)

    Google Scholar 

  275. T. Huhtala, J. Rytkönen, A. Jalanko, M. Kaasalainen, J. Salonen, R. Riikonen, A. Närvänen, Native and complexed IGF-1: biodistribution and pharmacokinetics in infantile neuronal ceroid lipofuscinosis. J. Drug Deliv. 2012, 626417 (2012)

    Google Scholar 

  276. M.P. Sarparanta, L.M. Bimbo, E.M. Mäkilä, J.J. Salonen, P.H. Laaksonen, A.M.K. Helariutta, M.B. Linder, J.T. Hirvonen, T.J. Laaksonen, H.A. Santos, A.J. Airaksinen, The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33, 3353–3362 (2012)

    Google Scholar 

  277. J. Rytkönen, R. Miettinen, M. Kaasalainen, V.-P. Lehto, J. Salonen, A. Närvänen, R. Miettinen, Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes. J. Nanomater. 2012, 2–9 (2012)

    Google Scholar 

  278. L. Gu, J.-H. Park, K.H. Duong, E. Ruoslahti, M.J. Sailor, Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 6, 2546–2552 (2010)

    Google Scholar 

  279. A. Muñoz-Noval, V. Sánchez-Vaquero, V. Torres-Costa, D. Gallach, V. Ferro-Llanos, J.J. Serrano, M. Manso-Silván, J.P. García-Ruiz, F. del Pozo, R.J. Martín-Palma, Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications. J. Biomed. Opt. 16, 025002–025008 (2011)

    Google Scholar 

  280. C. Chiappini, E. Tasciotti, R.E. Serda, L. Brousseau, X. Liu, M. Ferrari, Mesoporous silicon particles as intravascular drug delivery vectors: fabrication, in-vitro, and in-vivo assessments. Phys. Stat. Sol. (C). 8, 1826–1832 (2010)

    Google Scholar 

  281. L.A. Osminkina, K.P. Tamarov, A.P. Sviridov, R.A. Galkin, M.B. Gongalsky, V.V. Solovyev, A.A. Kudryavtsev, V.Y. Timoshenko, Photoluminescent biocompatible silicon nanoparticles for cancer theranostic applications. J. Biophoton. 5, 529–535 (2012)

    Google Scholar 

  282. S. Srinivasan, J.F. Alexander, W.H. Driessen, F. Leonard, H. Ye, X. Liu, W. Arap, R. Pasqualini, M. Ferrari, B. Godin, Bacteriophage associated silicon particles: design and characterization of a novel theranostic vector with improved payload carrying potential. J. Mater. Chem. B 1, 5218–5229 (2013)

    Google Scholar 

  283. R. Lanza, R. Langer, J. Vacanti, Principles of Tissue Engineering, 3rd edn. (Elsevier Inc., 2007)

    Google Scholar 

  284. Y. Ikada, Challenges in tissue engineering. J. R. Soc. Interface 3, 589–601 (2006)

    Google Scholar 

  285. S.J.P. McInnes, N.H. Voelcker, Porous silicon–polymer composites for cell culture and tissue engineering applications, in Porous Silicon for Biomedical Applications, ed. by H.A. Santos (Woodhead Publishing Limited, 2014), pp. 420–469

    Google Scholar 

  286. P.-Y. Wang, L.R. Clements, H. Thissen, A. Jane, W.-B. Tsai, N.H. Voelcker, Screening mesenchymal stem cell attachment and differentiation on porous silicon gradients. Adv. Funct. Mater. 22, 3414–3423 (2012)

    Google Scholar 

  287. J.F. Mano, G.A. Silva, H.S. Azevedo, P.B. Malafaya, R.A. Sousa, S.S. Silva, L.F. Boesel, J.M. Oliveira, T.C. Santos, A.P. Marques, N.M. Neves, R.L. Reis, Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface 4, 999–1030 (2007)

    Google Scholar 

  288. S. Bayliss, L. Buckberry, P. Harris, C. Rousseau, Nanostructured semiconductors: compatibility with biomaterials. Thin Solid Films 297, 308–310 (1997)

    Google Scholar 

  289. S.C. Bayliss, P.J. Harris, L.D. Buckberry, C. Rousseau, Phosphate and cell growth on nanostructured semiconductors. J. Mater. Sci. Lett. 16, 737–740 (1997)

    Google Scholar 

  290. A.V. Sapelkin, S.C. Bayliss, B. Unal, A. Charalambou, Interaction of B50 rat hippocampal cells with stain-etched porous silicon. Biomaterials 27, 842–846 (2006)

    Google Scholar 

  291. Y.L. Khung, G. Barritt, N.H. Voelcker, Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp. Cell Res. 314, 789–800 (2008)

    Google Scholar 

  292. P.-Y. Wang, L.R. Clements, H. Thissen, S.-C. Hung, N.-C. Cheng, W.-B. Tsai, N.H. Voelcker, Screening the attachment and spreading of bone marrow-derived and adipose-derived mesenchymal stem cells on porous silicon gradients. RSC Adv. 2, 12857–12865 (2012)

    Google Scholar 

  293. A. Angelescu, I. Kleps, M. Mihaela, M. Simion, T. Neghina, S. Petrescu, N. Moldovan, C. Panduraru, A. Raducanu, Porous silicon matrix for applications in biology. Rev. Adv. Mater. Sci. 5, 440–449 (2003)

    Google Scholar 

  294. L.R. Clements, P.-Y. Wang, W.-B. Tsai, H. Thissen, N.H. Voelcker, Electrochemistry-enabled fabrication of orthogonal nanotopography and surface chemistry gradients for high-throughput screening. Lab Chip 12, 1480–1486 (2012)

    Google Scholar 

  295. Y.-L. Khung, S.D. Graney, N.H. Voelcker, Micropatterning of porous silicon films by direct laser writing. Biotechnol. Prog. 22, 1388–1393 (2008)

    Google Scholar 

  296. S.P. Low, N.H. Voelcker, L.T. Canham, K.A. Williams, The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30, 2873–2880 (2009)

    Google Scholar 

  297. L.T. Canham, C.L. Reeves, Apatite nucleation on low porosity silicon in acellular simulated body fluids. Mat. Res. Soc. Symp. Proc. 414, 189 (1995)

    Google Scholar 

  298. V. Chin, B.E. Collins, M.J. Sailor, S.N. Bhatia, Compatibility of primary hepatocytes with oxidized nanoporous silicon. Adv. Mater. 13, 1877 (2001)

    Google Scholar 

  299. S.C. Bayliss, R. Heald, D.I. Fletcher, L.D. Buckberry, The culture of mammalian cells on nanostructured silicon. Adv. Mater. 11, 318–321 (1999)

    Google Scholar 

  300. A. Sánchez, J. González, A. García-Piñeres, M.L. Montero, Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture. Phys. Stat. Sol. (C). 8, 1898–1902 (2011)

    Google Scholar 

  301. W. Sun, J.E. Puzas, T.-J. Sheu, X. Liu, P.M. Fauchet, Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv. Mater. 19, 921–924 (2007)

    Google Scholar 

  302. D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H. Thompson, J.J. Powell, G.N. Hampson, Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127–135 (2003)

    Google Scholar 

  303. M. Whitehead, D. Fan, P. Mukherjee, G. Akkaraju, L. Canham, J. Coffer, High-porosity poly(ε-caprolactone)/mesoporous silicon scaffolds: calcium phosphate deposition and biological response to bone precursor cells. Tissue Eng. 14, 195–206 (2008)

    Google Scholar 

  304. M.A. Whitehead, D. Fan, G.R. Akkaraju, L.T. Canham, J.L. Coffer, Accelerated calcification in electrically conductive polymer composites comprised of poly(ɛ-caprolactone), polyaniline, and bioactive mesoporous silicon. J. Biomed. Mater. Res. 83A, 225–234 (2007)

    Google Scholar 

  305. M.N. Rahaman, D.E. Day, B.S. Bal, Q. Fu, S.B. Jung, L.F. Bonewald, A.P. Tomsia, Acta Biomater. 7, 2355–2373 (2011)

    Google Scholar 

  306. D. Fan, E. De Rosa, M.B. Murphy, Y. Peng, C.A. Smid, C. Chiappini, X. Liu, P. Simmons, B.K. Weiner, M. Ferrari, E. Tasciotti, Mesoporous silicon-PLGA composite microspheres for the double controlled release of biomolecules for orthopedic tissue engineering. Adv. Funct. Mater. 22, 282–293 (2011)

    Google Scholar 

  307. A.H. Mayne, S.C. Bayliss, P. Barr, M. Tobin, L.D. Buckberry, Mayne 2000. Phys. Stat. Sol. (A). 182, 505–513 (2000)

    Google Scholar 

  308. S.B.-T. de-Leon, R. Oren, M.E. Spira, N. Korbakov, S. Yitzchaik, A. Sa’ar, Porous silicon substrates for neurons culturing and bio-photonic sensing. Phys. Stat. Sol. (A). 202, 1456–1461 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven J. P. McInnes or Rachel D. Lowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McInnes, S.J.P., Lowe, R.D. (2015). Biomedical Uses of Porous Silicon. In: Losic, D., Santos, A. (eds) Electrochemically Engineered Nanoporous Materials. Springer Series in Materials Science, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-20346-1_5

Download citation

Publish with us

Policies and ethics