Skip to main content

Porous Silicon Biosensors Employing Emerging Capture Probes

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 220))

Abstract

The application of porous silicon (PSi) for biosensing was first described by Thust et al. in 1996, demonstrating a potentiometric biosensor for the detection of penicillin. However, only in the past decade PSi has established as a promising nanomaterial for label-free biosensing applications. This chapter focuses on the integration of new emerging capture probes with PSi-based biosensing schemes. An overview of natural and synthetic receptors and their advantageous characteristics for the potential application in PSi biosensors technology is presented. We also review and discuss several examples, which successfully combine these new bioreceptors with PSi optical and electrochemical transducers, for label-free biosensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.J. Sailor, Porous Silicon in Practice (Wiley-VCH, Weinheim, 2011), p. 250

    Google Scholar 

  2. A. Jane et al., Porous silicon biosensors on the advance. Trends Biotechnol. 27(4), 230–239 (2009)

    Google Scholar 

  3. L.M. Bonanno, E. Segal, Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6(10), 1755–1770 (2011)

    Google Scholar 

  4. J. Salonen, V.-P. Lehto, Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J. 137(1), 162–172 (2008)

    Google Scholar 

  5. M. Archer, M. Christophersen, P.M. Fauchet, Macroporous silicon electrical sensor for DNA hybridization detection. Biomed. Microdevices 6(3), 203–211 (2004)

    Google Scholar 

  6. K.A. Kilian, T. Boecking, J.J. Gooding, The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem. Commun. 6, 630–640 (2009)

    Google Scholar 

  7. L.M. Bonanno, L.A. DeLouise, Steric crowding effects on target detection in an affinity biosensor. Langmuir 23(10), 5817–5823 (2007)

    Google Scholar 

  8. L.M. Bonanno, L.A. DeLouise, Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor. Anal. Chem. 82(2), 714–722 (2010)

    Google Scholar 

  9. N. Massad-Ivanir et al., Engineering nanostructured porous SiO(2) surfaces for bacteria detection via “direct cell capture”. Anal. Chem. 83(9), 3282–3289 (2011)

    Google Scholar 

  10. S. Chan et al., Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 123(47), 11797–11798 (2001)

    Google Scholar 

  11. N. Massad-Ivanir, E. Segal, 12—Porous Silicon for Bacteria Detection, in Porous Silicon for Biomedical Applications, ed. by H.A. Santos (Woodhead Publishing, Finland, 2014), pp. 286–303

    Google Scholar 

  12. G. Shtenberg, E. Segal, Porous Silicon Optical Biosensors, in Handbook of Porous Silicon, ed. by L. Canham, (Springer International Publishing, Switzerland, 2014), pp. 1–11

    Google Scholar 

  13. C. Pacholski, Photonic crystal sensors based on porous silicon. Sensors 13(4), 4694–4713 (2013)

    Google Scholar 

  14. K.P.S. Dancil, D.P. Greiner, M.J. Sailor, A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface. J. Am. Chem. Soc. 121(34), 7925–7930 (1999)

    Google Scholar 

  15. A. Janshoff et al., Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 120(46), 12108–12116 (1998)

    Google Scholar 

  16. V.S.-Y. Lin et al., A porous silicon-based optical interferometric biosensor. Science 278(5339), 840–843 (1997)

    Google Scholar 

  17. A. Salis et al., Porous Silicon-based Electrochemical Biosensors, in Biosensors—Emerging Materials and Applications, ed. by P.A. Serra.(InTech, Croatia, 2011)

    Google Scholar 

  18. D.R. Thévenot et al., Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 16(1–2), 121–131 (2001)

    Google Scholar 

  19. A.P.F. Turner, Current trends in biosensor research and development. Sens. Actuators 17(3–4), 433–450 (1989)

    Google Scholar 

  20. K. Kahn, K.W. Plaxco, Principles of Molecular Recognition, in Recognition Receptors in Biosensors, ed by M. Zourob (Springer, New York, 2011), pp. 3–46

    Google Scholar 

  21. M. Zourob, Recognition Receptors in Biosensors (Springer, New York Dordrecht Heidelberg London, 2010)

    Google Scholar 

  22. S.A. Piletsky, M.J. Whitcombe (eds.), Designing Receptors for the Next Generation of Biosensors. in Springer Series on Chemical Sensors and Biosensors, ed. by G. Urban. Vol. 12 (Springer, Heidelberg, 2013)

    Google Scholar 

  23. S. Tonegawa, Somatic generation of antibody diversity. Nature 302(5909), 575–581 (1983)

    Google Scholar 

  24. J.P. Kim et al., Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal. Biochem. 381(2), 193–198 (2008)

    Google Scholar 

  25. P. Holliger, P.J. Hudson, Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23(9), 1126–1136 (2005)

    Google Scholar 

  26. A.C.A. Roque, C.R. Lowe, M.A. Taipa, Antibodies and genetically engineered related molecules: production and purification. Biotechnol. Prog. 20(3), 639–654 (2004)

    Google Scholar 

  27. K. Shreder, Synthetic haptens as probes of antibody response and immunorecognition. METHODS: A Companion to Methods in Enzymology 20(3), 372–379 (2000)

    Google Scholar 

  28. N.A.E. Hopkins, Antibody engineering for Biosensor Applications, in Recognition Receptors in Biosensors, ed. by M. Zourob (Springer, New York, 2010), pp. 451–529

    Google Scholar 

  29. L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102(1), 29–000 (1962)

    Google Scholar 

  30. H.G. Hundeck et al., Calorimetric biosensor for the detection and determination of enantiomeric excesses in aqueous and organic phases. Biosens. Bioelectron. 8(3–4), 205–208 (1993)

    Google Scholar 

  31. B.D. Leca-Bouvier, L.C. Blum, Enzyme for Biosensing Applications, in Recognition Receptors in Biosensors, ed. by M. Zourob (Springer, New York ,2010), pp. 177–220

    Google Scholar 

  32. I. Axarli, A. Prigipaki, N.E. Labrou, Engineering the substrate specificity of cytochrome P450CYP102A2 by directed evolution: production of an efficient enzyme for bioconversion of fine chemicals. Biomol. Eng. 22(1–3), 81–88 (2005)

    Google Scholar 

  33. M. Ostermeier, Engineering allosteric protein switches by domain insertion. Protein Eng. Des. Sel. 18(8), 359–364 (2005)

    Google Scholar 

  34. J.P. Chambers et al., Biosensor recognition elements. Curr. Issues Mol. Biol. 10, 1–12 (2008)

    Google Scholar 

  35. R.E.W. Hancock, H.-G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotech. 24(12), 1551–1557 (2006)

    Google Scholar 

  36. C.D. Fjell et al., Designing antimicrobial peptides: form follows function. Nat. Rev. Drug. Discov. 11(1), 37–51 (2012)

    Google Scholar 

  37. L. Shriver-Lake et al., Antimicrobial Peptides for Detection and Diagnostic Assays, in Designing Receptors for the Next Generation of Biosensors, ed. by S.A. Piletsky, M.J. Whitcombe (Springer, Heidelberg, 2013), pp. 85–104

    Google Scholar 

  38. M.S. Mannoor et al., Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci U S A 107(45), 19207–19212 (2010)

    Google Scholar 

  39. I.E. Tothill, Peptides as Molecular Receptors, in Recognition Receptors in Biosensors, ed. by M. Zourob (Springer, New York, 2010), pp. 249–274

    Google Scholar 

  40. S. Rotem et al., Analogous oligo-acyl-lysines with distinct antibacterial mechanisms. FASEB J. 22(8), 2652–2661 (2008)

    Google Scholar 

  41. A.P.F. Turner, Biochemistry—biosensors sense and sensitivity. Science 290(5495), 1315–1317 (2000)

    Google Scholar 

  42. J.C. Liao et al., Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. J. Mol. Diagn. 9(2), 158–168 (2007)

    Google Scholar 

  43. F. Farabullini et al., Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens. Bioelectron. 22(7), 1544–1549 (2007)

    Google Scholar 

  44. Y. Shin, A.P. Perera, M.K. Park, Label-free DNA sensor for detection of bladder cancer biomarkers in urine. Sens. Actuators B-Chem. 178, 200–2006 (2013)

    Google Scholar 

  45. F. Stahl, Analysis of genregulation—DNA chip technology. Chem. unserer Zeit 39(3), 188–194 (2005)

    Google Scholar 

  46. Y.V. Gerasimova, J. Ballantyne, D.M. Kolpashchikov, Detection of SNP-containing human DNA sequences using a split sensor with a universal molecular beacon reporter. Methods Mol. Biol. 1039, 69–80 (2013)

    Google Scholar 

  47. J. Wang, From DNA biosensors to gene chips. Nucleic Acids Res. 28(16), 3011–3016 (2000)

    Google Scholar 

  48. F. Eckstein, G. Gish, Phosphorothioates in molecular-biology. Trends Biochem. Sci. 14(3), 97–100 (1989)

    Google Scholar 

  49. B. Vester, J. Wengel, LNA (Locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43(42), 13233–13241 (2004)

    Google Scholar 

  50. A. Vainrub, B.M. Pettitt, Coulomb blockage of hybridization in two-dimensional dna arrays. Phys. Rev. E. 66(4) (2002)

    Google Scholar 

  51. A.N. Rao, D.W. Grainger, Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomater. Sci. 2(4), 436–471 (2014)

    Google Scholar 

  52. P.E. Nielsen et al., Sequence selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1498–1500 (1991)

    Google Scholar 

  53. E. Mateo-Martí, C.-M. Pradier, A Novel Type of Nucleic Acid-based Biosensors: the Use of PNA Probes, Associated with Surface Science and Electrochemical Detection Techniques in Intelligent and biosensor, ed. by V.S. Somerset (InTech, Croatia, 2010)

    Google Scholar 

  54. A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818–822 (1990)

    Google Scholar 

  55. D.L. Robertson, G.F. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344(6265), 467–468 (1990)

    Google Scholar 

  56. C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990)

    Google Scholar 

  57. R. Stoltenburg, N. Nikolaus, B. Strehlitz, Capture-selex: selection of dna aptamers for aminoglycoside antibiotics. J. Anal. Methods Chem 415697, 14 (2012)

    Google Scholar 

  58. R. Stoltenburg, C. Reinemann, B. Strehlitz, FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383(1), 83–91 (2005)

    Google Scholar 

  59. A. Nitsche et al., One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 7, 48 (2007)

    Google Scholar 

  60. D.J. Patel, Structural analysis of nucleic acid aptamers. Curr. Opin. Chem. Biol. 1(1), 32–46 (1997)

    Google Scholar 

  61. T. Hermann, D.J. Patel, Biochemistry—adaptive recognition by nucleic acid aptamers. Science 287(5454), 820–825 (2000)

    Google Scholar 

  62. B. Strehlitz, N. Nikolaus, R. Stoltenburg, Protein detection with aptamer biosensors. Sensors 8(7), 4296–4307 (2008)

    Google Scholar 

  63. J.-G. Walter, F. Stahl, T. Scheper, Aptamers as affinity ligands for downstream processing. Eng. Life Sci. 12(5), 496–506 (2012)

    Google Scholar 

  64. J.-G Walter et al., Aptasensors for small molecule detection. Z. Naturforsch. 67b 976–986 (2012)

    Google Scholar 

  65. M. Loenne et al., Aptamer-modified Nanoparticles as Biosensors, in Biosensors Based on Aptamers and Enzymes—Advances in biochemical engineering/biotechnology, ed. by M.B. Gu, H.-S. Kim (Springer, Heidelberg, 2014), pp. 121–154

    Google Scholar 

  66. A. Heilkenbrinker et al., Identification of the target binding site of ethanolamine binding aptamers and its exploitation for ethanolamine detection. Anal. Chem. 87(1), 677–685 (2015)

    Google Scholar 

  67. N. Hamaguchi, A. Ellington, M. Stanton, Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294(2), 126–131 (2001)

    Google Scholar 

  68. R. Stoltenburg, C. Reinemann, B. Strehlitz, SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24(4), 381–403 (2007)

    Google Scholar 

  69. Ö. Kökpinar et al., Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads. Biotechnol. Bioeng. 108(10), 2371–2379 (2011)

    Google Scholar 

  70. G. Zhu, J.-G. Walter, Aptamer-Modified Magnetic Beads in Affinity Separation of Proteins, in Affinity Chromatography: Methods and Protocols, 2nd edn. ed. by S. Reichelt (Springer Protocols, Humana Press, 2015), pp. 67–82

    Google Scholar 

  71. E.J. Lee et al., Peptide nucleic acids are an additional class of aptamers. Rsc Advances 3(17), 5828–5831 (2013)

    Google Scholar 

  72. R. Bredehorst et al., Method for determining an unknown PNA sequence and uses thereof, ed. by E.P. Specification 2005

    Google Scholar 

  73. G. Vasapollo et al., Molecularly imprinted polymers: present and future prospective. Int. J. Mol. Sci. 12(9), 5908–5945 (2011)

    Google Scholar 

  74. S.A. Piletsky et al., Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 16(9–12), 701–707 (2001)

    Google Scholar 

  75. T.A. Sergeyeva et al., Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Anal. Chim. Acta 392(2–3), 105–111 (1999)

    Google Scholar 

  76. R.J. Umpleby et al., Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 804(1), 141–149 (2004)

    Google Scholar 

  77. F.A. Harraz, Porous silicon chemical sensors and biosensors: a review. Sens. Actuators B: Chem. 202, 897–912 (2014)

    Google Scholar 

  78. L.A. DeLouise, P.M. Kou, B.L. Miller, Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights biosens. sensitivity Anal. Chem. 77(10), 3222–3230 (2005)

    Google Scholar 

  79. Z. Deng, E.C. Alocilja, Characterization of nanoporous silicon-based dna biosensor for the detection of salmonella enteritidis. Sens. J. IEEE 8(6), 775–780 (2008)

    Google Scholar 

  80. S.B. de Leon et al., Neurons culturing and biophotonic sensing using porous silicon. Appl. Phys. Lett. 84(22), 4361–4363 (2004)

    Google Scholar 

  81. M.P. Stewart, J.M. Buriak, Chemical and biological applications of porous silicon technology. Adv. Mater. 12(12), 859–869 (2000)

    Google Scholar 

  82. A. Birner et al., Silicon-based photonic crystals. Adv. Mater. 13(6), 377–388 (2001)

    Google Scholar 

  83. J.E. Lugo et al., Electrochemical sensing of dna with porous silicon layers. J. New Mater. Electrochem. Syst. 10(2), 113–116 (2007)

    Google Scholar 

  84. M.J. Song et al., Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode. J. Biosci. Bioeng. 103(1), 32–37 (2007)

    Google Scholar 

  85. S. Setzu et al., Porous silicon-based potentiometric biosensor for triglycerides. physica status solidi(a). 204(5), 1434–1438 (2007)

    Google Scholar 

  86. J. Zhang et al., Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor. Anal. Lett. 45(9), 986–992 (2012)

    Google Scholar 

  87. M. Simion et al., Dual detection biosensor based on porous silicon substrate. Mater. Sci. Engi. B-Adv. Funct. Solid-State Mater. 178(19), 1268–1274 (2013)

    Google Scholar 

  88. L.M. Bonanno, L.A. DeLouise, Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor. Anal. Chem. 82(2), 714–722 (2009)

    Google Scholar 

  89. G. Shtenberg et al., Picking up the pieces: a generic porous si biosensor for probing the proteolytic products of enzymes. Anal. Chem. 85(3), 1951–1956 (2012)

    Google Scholar 

  90. K.A. Kilian et al., Peptide-modified optical filters for detecting protease activity. ACS Nano 1(4), 355–361 (2007)

    Google Scholar 

  91. K.R. Beavers et al. Porous Silicon Functionalization for Drug Delivery and Biosensing by In Situ Peptide Nucleic Acid Synthesis. in Porous Semiconductors—Science and Technology (Alicante-Benidorm, Spain, 2014)

    Google Scholar 

  92. L. Yoo et al., A simple one-step assay platform based on fluorescence quenching of macroporous silicon. Biosens. Bioelectron. 41, 477–483 (2013)

    Google Scholar 

  93. K. Urmann et al., Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds. Anal. Chem. 87(3), 1999–2006 (2015)

    Google Scholar 

  94. V.M. Starodub et al., Control of myoglobin level in a solution by an immune sensor based on the photoluminescence of porous silicon. Sens. d Actuators B: Chem. 58(1–3), 409–414 (1999)

    Google Scholar 

  95. A.G. Cullis, L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353(6342), 335–338 (1991)

    Google Scholar 

  96. L.T. Canham, K. (Firm), Properties of porous silicon EMIS datareviews series no. 18. ed. by Leigh Canham (Institution of Electrical Engineers, London, 1997)

    Google Scholar 

  97. O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38(1–3), 1–126 (2000)

    Google Scholar 

  98. G. Gaur, D. Koktysh, S.M. Weiss. Porous silicon biosensors using quantum dot signal amplifiers. Proc. of SPIE 8594, 859408 (2013)

    Google Scholar 

  99. X. Fan et al., Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620(1–2), 8–26 (2008)

    Google Scholar 

  100. C. Pacholski et al., Reflective interferometric fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2. J. Am. Chem. Soc. 128, 4250–4252 (2006)

    Google Scholar 

  101. L.M. Bonanno, L.A. DeLouise, Whole blood optical biosensor. Biosens. Bioelectron. 23(3), 444–448 (2007)

    Google Scholar 

  102. M.M. Orosco et al., Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity. Adv. Mater. 18(11), 1393–1396 (2006)

    Google Scholar 

  103. C. Pacholski et al., Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc. 127(33), 11636–11645 (2005)

    Google Scholar 

  104. A. Ressine, G. Marko-Varga, T. Laurell, Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout, in Biotechnology Annual Review, ed. by M.R. El-Gewely (Elsevier 2007), pp. 149–200

    Google Scholar 

  105. L. Danos, R. Greef, T. Markvart, Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films. Thin Solid Films 516(20), 7251–7255 (2008)

    Google Scholar 

  106. H.M. Nguyen et al., Efficient radiative and nonradiative energy transfer from proximal cdse/zns nanocrystals into silicon nanomembranes. ACS Nano 6(6), 5574–5582 (2012)

    Google Scholar 

  107. L. Gu, M. Orosco, M.J. Sailor, Detection of protease activity by FRET using porous silicon as an energy acceptor. physica status solidi (a), 206(6) pp. 1374–1376 (2009)

    Google Scholar 

  108. J.R. Unruh et al., Orientational dynamics and dye-dna interactions in a dye-labeled dna aptamer. Biophys. J. 88(5), 3455–3465 (2005)

    Google Scholar 

  109. B.P. Ramakers et al., Measurement of the endogenous adenosine concentration in humans in vivo: methodological considerations. Curr. Drug Metab. 9(8), 679–685 (2008)

    Google Scholar 

  110. J. Stagg, M.J. Smyth, Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29(39), 5346–5358 (2010)

    Google Scholar 

  111. G. Schulte, B.B. Fredholm, Signalling from adenosine receptors to mitogen-activated protein kinases. Cell. Signal. 15(9), 813–827 (2003)

    Google Scholar 

  112. L. Bekar et al., Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat. Med. 14(1), 75–80 (2008)

    Google Scholar 

  113. L.A. Conlay et al., Caffeine alters plasma adenosine levels. Nature 389(6647), 136–136 (1997)

    Google Scholar 

  114. D.E. Huizenga, J.W. Szostak, A DNA aptamer that binds adenosine and ATP. Biochemistry 34(2), 656–665 (1995)

    Google Scholar 

  115. J. Zhang et al., Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6(2), 201–204 (2010)

    Google Scholar 

  116. S. Guo et al., Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres. Anal. Chem. 83(20), 8035–8040 (2011)

    Google Scholar 

  117. L. Zhang et al., A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. Biosens. Bioelectron. 25(8), 1897–1901 (2010)

    Google Scholar 

  118. K. Urmann et al. Highly Generic Aptamer-Based Porous Si Optical Biosensors. in Porous Semiconductors—Science and Technology.(Alicante-Benidorm, Spain, 2014)

    Google Scholar 

  119. S.A. Doyle, M.B. Murphy, U.S. Patent Aptamers and methods for their in vitro selection and uses thereof 2005

    Google Scholar 

  120. G. Zhu et al., Characterization of optimal aptamer-microarray binding chemistry and spacer design. Chem. Eng. Technol. 34(12), 2022–2028 (2011)

    Google Scholar 

  121. J.G. Walter et al., Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Anal. Chem. 80(19), 7372–7378 (2008)

    Google Scholar 

  122. D. Grieshaber et al., Electrochemical biosensors—sensor principles and architectures. Sensors 8(3), 1400–1458 (2008)

    Google Scholar 

  123. D.R. Thevenot et al., Electrochemical biosensors: recommended definitions and classification: biosens Bioelectron. 16(1–2), 121–131 (2001)

    Google Scholar 

  124. F. De Filippo et al., Measurement of Porous Silicon Dielectric Constant by VUV Laser Harmonic Radiation. physica status solidi (a), 2000. 182(1) pp. 261–266

    Google Scholar 

  125. J. Zhang et al., Nano-porous light-emitting silicon chip as a potential biosensor platform. Anal. Lett. 40(8), 1549–1555 (2007)

    Google Scholar 

  126. J. Zhang et al., A label free electrochemical nanobiosensor study. Anal. Lett. 42(17), 2905–2913 (2009)

    Google Scholar 

  127. Y.-J. Kim et al., Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst. Eng. 33(1), 31–37 (2010)

    Google Scholar 

  128. C.C. Weber et al., Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnol. Bioeng. 89(1), 9–17 (2005)

    Google Scholar 

  129. C.S. Pundir, J. Narang, Determination of triglycerides with special emphasis on biosensors: a review. Int. J. Biol. Macromol. 61, 379–389 (2013)

    Google Scholar 

  130. R.R.K. Reddy et al., Estimation of triglycerides by a porous silicon based potentiometric biosensor. Curr. Appl. Phys. 3(2–3), 155–161 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Urmann, K., Tenenbaum, E., Walter, JG., Segal, E. (2015). Porous Silicon Biosensors Employing Emerging Capture Probes. In: Losic, D., Santos, A. (eds) Electrochemically Engineered Nanoporous Materials. Springer Series in Materials Science, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-20346-1_4

Download citation

Publish with us

Policies and ethics