Skip to main content

Optical Properties of Nanoporous Anodic Alumina and Derived Applications

  • Chapter
  • First Online:
Nanoporous Alumina

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 219))

Abstract

Inexpensive formation of periodically ordered structures with periodicities and feature sizes lower than 100 nm has triggered a vast amount or research in recent years. Of particular interest in nanotechnology is the nanoporous alumina, which can be produced with a self-organized arrangement of pores in the adequate anodization conditions. Most of the interest of this material is based in its outstanding physical and chemical and properties, and more specifically in its optical properties. The interaction of light with the nanostructured porous alumina gives rise to a wealth of optical properties that have their interest both in research level and also in application. In this work we aim at giving an extensive review of the published research on the optical properties of nanoporous alumina. The review will account for the different studied optical properties of this material such as the existence of a photonic stop band originated from its quasi-random nanostructure, the interferometric and light guiding properties that can be applied to biosensing, the structure nanoengineering to achieve more complex photonic behaviour such as distributed-Bragg reflectors or rugate filters, and the photoluminescence properties. In a second part, a summary of the different applications proposed on the basis of these properties, such as in biotechnology or energy will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985)

    Google Scholar 

  2. G.E. Thompson, G.C. Wood, in Treatise on Materials Science and Technology, ed. by J.C. Scully (Academic Press, New York, 1983), pp. 205–329

    Google Scholar 

  3. G.D. Sulka, in Nanostructured Materials in Electrochemistry, ed. by A. Eftekhari (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), pp. 1–116

    Google Scholar 

  4. Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011 (2000)

    Google Scholar 

  5. Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, X.G. Zhu, Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 74, 2951 (1999)

    Google Scholar 

  6. X. Sun, F. Xu, Z. Li, W. Zhang, Photoluminescence properties of anodic alumina membranes with ordered nanopore arrays. J. Lumin. 121, 588–594 (2006)

    Google Scholar 

  7. S. Chan, Y. Li, L.J. Rothberg, B.L. Miller, P.M. Fauchet, Nanoscale silicon microcavities for biosensing. Mater. Sci. Eng., C 15, 277–282 (2001)

    Google Scholar 

  8. L.F. Marsal, L. Vojkuvka, P. Formentin, J. Pallarés, J. Ferré-Borrull, Fabrication and optical characterization of nanoporous alumina films annealed at different temperatures. Opt. Mater. (Amst) 31, 860–864 (2009)

    Google Scholar 

  9. S. Nakamura, M. Saito, L.-F. Huang, M. Miyagi, K. Wada, Infrared optical constants of anodic alumina films with micropore arrays. Jpn. J. Appl. Phys. 31, 3589–3593 (1992)

    Google Scholar 

  10. V.A. Yakovlev, E.A. Vinogradov, N.N. Novikova, G. Mattei, M.-P. Delplancke-Ogletree, Infrared reflectivity spectra of thin porous aluminum oxide films. Phys. Status Solidi 6, 1697–1699 (2009)

    Google Scholar 

  11. Y. Li, G.H. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Photoluminescence and optical absorption caused by the F+ centres in anodic alumina membranes. J. Phys.: Condens. Matter 13, 2691–2699 (2001)

    Google Scholar 

  12. J.H. Wu, X.L. Wu, N. Tang, Y.F. Mei, X.M. Bao, Strong ultraviolet and violet photoluminescence from Si-based anodic porous alumina films. Appl. Phys. A Mater. Sci. Process. 72, 735–737 (2001)

    Google Scholar 

  13. W.L. Xu, M.J. Zheng, S. Wu, W.Z. Shen, Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membranes. Appl. Phys. Lett. 85, 4364 (2004)

    Google Scholar 

  14. A. Rauf, M. Mehmood, M. Ahmed, M. ul Hasan, M. Aslam, Effects of ordering quality of the pores on the photoluminescence of porous anodic alumina prepared in oxalic acid. J. Lumin. 130, 792–800 (2010)

    Google Scholar 

  15. G. Shi, C.M. Mo, W.L. Cai, L.D. Zhang, Photoluminescence of ZnO nanoparticles in alumina membrane with ordered pore arrays. Solid State Commun. 115, 253–256 (2000)

    Google Scholar 

  16. N.I. Mukhurov, S.P. Zhvavyi, S.N. Terekhov, A.Y. Panarin, I.F. Kotova, P.P. Pershukevich, I.A. Khodasevich, I.V. Gasenkova, V.A. Orlovich, Influence of electrolyte composition on photoluminescent properties of anodic aluminum oxide. J. Appl. Spectrosc. 75, 214–218 (2008)

    Google Scholar 

  17. A. Nourmohammadi, S.J. Asadabadi, M.H. Yousefi, M. Ghasemzadeh, Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid. Nanoscale Res. Lett. 7, 689 (2012)

    Google Scholar 

  18. T. Gao, G. Meng, L. Zhang, Blue luminescence in porous anodic alumina films: the role of the oxalic impurities. J. Phys.: Condens. Matter 15, 2071–2079 (2003)

    Google Scholar 

  19. J.H. Chen, C.P. Huang, C.G. Chao, T.M. Chen, The investigation of photoluminescence centers in porous alumina membranes. Appl. Phys. A 84, 297–300 (2006)

    Google Scholar 

  20. Y. Yamamoto, N. Baba, S. Tajima, Coloured materials and photoluminescence centres in anodic film on aluminium. Nature 289, 572–574 (1981)

    Google Scholar 

  21. G.S. Huang, X.L. Wu, Y.F. Mei, X.F. Shao, G.G. Siu, Strong blue emission from anodic alumina membranes with ordered nanopore array. J. Appl. Phys. 93, 582 (2003)

    Google Scholar 

  22. W.J. Stępniowski, M. Norek, M. Michalska-Domańska, A. Bombalska, A. Nowak-Stępniowska, M. Kwaśny, Z. Bojar, Fabrication of anodic aluminum oxide with incorporated chromate ions. Appl. Surf. Sci. 259, 324–330 (2012)

    Google Scholar 

  23. K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gösele, Self-ordering regimes of porous alumina: the 10 % porosity rule. Nano Lett. 2, 677–680 (2002)

    Google Scholar 

  24. A. Santos, M. Alba, M.M. Rahman, P. Formentín, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids. Nanoscale Res. Lett. 7, 228 (2012)

    Google Scholar 

  25. J. Choi, Y. Luo, R.B. Wehrspohn, R. Hillebrand, J. Schilling, U. Gösele, Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. J. Appl. Phys. 94, 4757 (2003)

    Google Scholar 

  26. T. Iijima, S. Kato, R. Ikeda, S. Ohki, G. Kido, M. Tansho, T. Shimizu, Structure of duplex oxide layer in porous alumina studied by 27Al MAS and MQMAS NMR. Chem. Lett. 34, 1286–1287 (2005)

    Google Scholar 

  27. R. Dronov, A. Jane, J.G. Shapter, A. Hodges, N.H. Voelcker, Nanoporous alumina-based interferometric transducers ennobled. Nanoscale 3, 3109–3114 (2011)

    Google Scholar 

  28. A. Santos, T. Kumeria, D. Losic, Nanoporous anodic aluminum oxide for chemical sensing and biosensors. TrAC Trends Anal. Chem. 44, 25–38 (2013)

    Google Scholar 

  29. S.D. Alvarez, C.-P. Li, C.E. Chiang, I.K. Schuller, M.J. Sailor, A label-free porous alumina interferometric immunosensor. ACS Nano 3, 3301–3307 (2009)

    Google Scholar 

  30. G. Macias, L.P. Hernández-Eguía, J. Ferré-Borrull, J. Pallares, L.F. Marsal, Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors. ACS Appl. Mater. Interfaces 5, 8093–8098 (2013)

    Google Scholar 

  31. K.H.A. Lau, L.-S. Tan, K. Tamada, M.S. Sander, W. Knoll, Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates: a waveguide optical study. J. Phys. Chem. B 108, 10812–10818 (2004)

    Google Scholar 

  32. A. Santos, T. Kumeria, D. Losic, Optically optimized photoluminescent and interferometric biosensors based on nanoporous anodic alumina: a comparison. Anal. Chem. 85, 7904–7911 (2013)

    Google Scholar 

  33. S. Bosch, J. Ferré-Borrull, J. Sancho-Parramon, A general-purpose software for optical characterization of thin films: specific features for microelectronic applications. Solid State Electron. 45, 703–709 (2001)

    Google Scholar 

  34. S. Bosch, J. Ferré-Borrull, N. Leinfellner, A. Canillas, Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations. Surf. Sci. 453, 9–17 (2000)

    Google Scholar 

  35. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935)

    Google Scholar 

  36. D. Aspnes, J. Theeten, F. Hottier, Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys. Rev. B 20, 3292–3302 (1979)

    Google Scholar 

  37. S. Berthier, Optique des milieux composites (Polytechnica, Paris, 1993)

    Google Scholar 

  38. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E. 16, 1214–1222 (1983)

    Google Scholar 

  39. A.C. Gâlcă, E.S. Kooij, H. Wormeester, C. Salm, V. Leca, J.H. Rector, B. Poelsema, Structural and optical characterization of porous anodic aluminum oxide. J. Appl. Phys. 94, 4296 (2003)

    Google Scholar 

  40. P.H. Berning, Theory and calculations of optical thin films, in Physics of Thin Films, ed. by G. Hass (Academic Press, New York, 1963), pp. 69–121

    Google Scholar 

  41. H.A. Macleod, Thin-film optical filters (CRC Press Taylor, Boca Raton, 2010)

    Google Scholar 

  42. Q. Xu, Y. Yang, J. Gu, Z. Li, H. Sun, Influence of Al substrate on the optical properties of porous anodic alumina films. Mater. Lett. 74, 137–139 (2012)

    Google Scholar 

  43. Q. Xu, H.-Y. Sun, Y.-H. Yang, L.-H. Liu, Z.-Y. Li, Optical properties and color generation mechanism of porous anodic alumina films. Appl. Surf. Sci. 258, 1826–1830 (2011)

    Google Scholar 

  44. S. Garabagiu, G. Mihailescu, Thinning anodic aluminum oxide films and investigating their optical properties. Mater. Lett. 65, 1648–1650 (2011)

    Google Scholar 

  45. K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, Y.D. Zheng, Photoluminescence oscillations in porous alumina films. Appl. Phys. Lett. 89, 201118 (2006)

    Google Scholar 

  46. L.D. Zeković, V.V. Urošević, B.R. Jovanić, Determination of the refractive index of porous anodic oxide films on aluminium by a photoluminescence method. Thin Solid Films 139, 109–113 (1986)

    Google Scholar 

  47. S. Gardelis, A.G. Nassiopoulou, V. Gianneta, M. Theodoropoulou, Photoluminescence-induced oscillations in porous anodic aluminum oxide films grown on Si: Effect of the interface and porosity. J. Appl. Phys. 107, 113104 (2010)

    Google Scholar 

  48. C. Yang, W. Shen, Y. Zhang, Z. Ye, X. Zhang, K. Li, X. Fang, X. Liu, Color-tuning method by filling porous alumina membrane using atomic layer deposition based on metal-dielectric-metal structure. Appl. Opt. 53, A142–A147 (2014)

    Google Scholar 

  49. J. Wang, Y. Li, D.-S. Wang, C.-W. Wang, The optical responses of one-dimensional photonic crystals based on the transparent Ag-anodic aluminum oxide composites with super low-refractive index. Thin Solid Films 520, 6970–6974 (2012)

    Google Scholar 

  50. M.M. Rahman, E. Garcia-Caurel, A. Santos, L.F. Marsal, J. Pallarès, J. Ferré-Borrull, Effect of the anodization voltage on the pore-widening rate of nanoporous anodic alumina. Nanoscale Res. Lett. 7, 474 (2012)

    Google Scholar 

  51. R.M.A. Azzam, N.M. Bashara, Ellipsometry and polarized light (North-Holland, Amsterdam, 1987)

    Google Scholar 

  52. A. De Martino, Y.K. Kim, E. Garcia-Caurel, B. Laude, B. Drévillon, Optimized Mueller polarimeter with liquid crystals. Opt. Lett. 28, 616–618 (2003)

    Google Scholar 

  53. E. Garcia-Caurel, A. De Martino, B. Drévillon, Spectroscopic Mueller polarimeter based on liquid crystal devices. Thin Solid Films 455–456, 120–123 (2004)

    Google Scholar 

  54. E. Garcia-Caurel, J. Nguyen, L. Schwartz, B. Drévillon, Application of FTIR ellipsometry to detect and classify microorganisms. Thin Solid Films 455–456, 722–725 (2004)

    Google Scholar 

  55. E. Garcia-Caurel, B. Drévillon, A. De Martino, L. Schwartz, Application of Fourier transform infrared ellipsometry to assess the concentration of biological molecules. Appl. Opt. 41, 7339–7345 (2002)

    Google Scholar 

  56. N. Leinfellner, J. Ferré-Borrull, S. Bosch, A software for optical characterization of thin films for microelectronic applications. Microelectron. Reliab. 40, 873–875 (2000)

    Google Scholar 

  57. J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, M.C. Ferrara, Use of information on the manufacture of samples for the optical characterization of multilayers through a global optimization. Appl. Opt. 42, 1325–1329 (2003)

    Google Scholar 

  58. W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)

    Google Scholar 

  59. W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gösele, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 3, 234–239 (2008)

    Google Scholar 

  60. D. Losic, M. Lillo, Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. Small 5, 1392–1397 (2009)

    Google Scholar 

  61. B. Wang, G.T. Fei, M. Wang, M.G. Kong, L.De Zhang, Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 18, 365601 (2007)

    Google Scholar 

  62. M.M. Rahman, L.F. Marsal, J. Pallarès, J. Ferré-Borrull, Tuning the photonic stop bands of nanoporous anodic alumina-based distributed bragg reflectors by pore widening. ACS Appl. Mater. Interfaces 5, 13375–13381 (2013)

    Google Scholar 

  63. G. Macias, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, 1-D nanoporous anodic alumina rugate filters by means of small current variations for real-time sensing applications. Nanoscale Res. Lett. 9, 315 (2014)

    Google Scholar 

  64. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(80), 1466–1468 (1995)

    Google Scholar 

  65. K. Sakoda, Optical Properties of Photonic Crystals, 2nd edn. (Springer, Berlin, 2005)

    Google Scholar 

  66. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic crystals: molding the flow of light (Princenton University Press, Princenton, 1995)

    Google Scholar 

  67. H. Masuda, M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. 35, L126–L129 (1996)

    Google Scholar 

  68. A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023 (1998)

    Google Scholar 

  69. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura, Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 13, 189–192 (2001)

    Google Scholar 

  70. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997)

    Google Scholar 

  71. X. Wang, S. Xu, M. Cong, H. Li, Y. Gu, W. Xu, Hierarchical structural nanopore arrays fabricated by pre-patterning aluminum using nanosphere lithography. Small 8, 972–976 (2012)

    Google Scholar 

  72. I. Mikulskas, S. Juodkazis, R. Tomasiūnas, J.G. Dumas, Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 13, 1574 (2001)

    Google Scholar 

  73. H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina. Appl. Phys. Lett. 78, 826 (2001)

    Google Scholar 

  74. J.M. Montero Moreno, M. Waleczek, S. Martens, R. Zierold, D. Görlitz, V.V. Martínez, V.M. Prida, K. Nielsch, Constrained order in nanoporous alumina with high aspect ratio: smart combination of interference lithography and hard anodization. Adv. Funct. Mater. 24, 1857–1863 (2014)

    Google Scholar 

  75. A. Rodríguez, A. Arriola, T. Tavera, N. Pérez, S.M. Olaizola, Enhanced depth control of ultrafast laser micromachining of microchannels in soda-lime glass. Microelectron. Eng. 98, 672–675 (2012)

    Google Scholar 

  76. H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, K. Nishio, Lasing from two-dimensional photonic crystals using anodic porous alumina. Adv. Mater. 18, 213–216 (2006)

    Google Scholar 

  77. T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, H. Masuda, Antireflection polymer surface using anodic porous alumina molds with tapered holes. Chem. Lett. 36, 530–531 (2007)

    Google Scholar 

  78. A. Santos, P. Formentín, J. Pallarés, J. Ferré-Borrull, L.F. Marsal, Fabrication and characterization of high-density arrays of P3HT nanopillars on ITO/glass substrates. Sol. Energy Mater. Sol. Cells 94, 1247–1253 (2010)

    Google Scholar 

  79. X. Fu, B. Zhang, X. Kang, J. Deng, C. Xiong, T. Dai, X. Jiang, T. Yu, Z. Chen, G.Y. Zhang, GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template. Opt. Express 19(Suppl 5), A1104–A1108 (2011)

    Google Scholar 

  80. Y.-W. Cheng, K.-M. Pan, C.-Y. Wang, H.-H. Chen, M.-Y. Ke, C.-P. Chen, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng, J. Huang, Enhanced light collection of GaN light emitting devices by redirecting the lateral emission using nanorod reflectors. Nanotechnology 20, 035202 (2009)

    Google Scholar 

  81. T. Dai, B. Zhang, X.N. Kang, K. Bao, W.Z. Zhao, D.S. Xu, G.Y. Zhang, Z.Z. Gan, Light extraction improvement from GaN-based light-emitting diodes with nano-patterned surface using anodic aluminum oxide template. IEEE Photonics Technol. Lett. 20, 1974–1976 (2008)

    Google Scholar 

  82. O. Takayama, M. Cada, Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths. Appl. Phys. Lett. 85, 1311 (2004)

    Google Scholar 

  83. Z. Král, L. Vojkůvka, E. Garcia-Caurel, J. Ferré-Borrull, L.F. Marsal, J. Pallarès, Calculation of angular-dependent reflectance and polarimetry spectra of nanoporous anodic alumina-based photonic crystal slabs. Photonics Nanostruct. Fundam. Appl. 7, 12–18 (2009)

    Google Scholar 

  84. O. Jessensky, F. Müller, U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998)

    Google Scholar 

  85. I. Maksymov, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Photonic stop bands in quasi-random nanoporous anodic alumina structures. Photonics Nanostruct. Fundam. Appl. 10, 459–462 (2012)

    Google Scholar 

  86. M.M. Rahman, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Photonic stop bands of two-dimensional quasi-random structures based on macroporous silicon. Phys. Status Solidi 8, 1066–1070 (2011)

    Google Scholar 

  87. J. Ferré-Borrull, J. Pallarès, G. Macías, L. Marsal, Nanostructural engineering of nanoporous anodic alumina for biosensing applications. Materials (Basel). 7, 5225–5253 (2014)

    Google Scholar 

  88. M. Noormohammadi, M. Moradi, Structural engineering of nanoporous alumina by direct cooling the barrier layer during the aluminum hard anodization. Mater. Chem. Phys. 135, 1089–1095 (2012)

    Google Scholar 

  89. W.J. Zheng, G.T. Fei, B. Wang, Z. Jin, L.De Zhang, Distributed Bragg reflector made of anodic alumina membrane. Mater. Lett. 63, 706–708 (2009)

    Google Scholar 

  90. C. Papadopoulos, A. Rakitin, J. Li, A. Vedeneev, J. Xu, Electronic transport in Y-junction carbon nanotubes. Phys. Rev. Lett. 85, 3476–3479 (2000)

    Google Scholar 

  91. W. Zheng, G. Fei, B. Wang, L. De Zhang, Modulation of transmission spectra of anodized alumina membrane distributed bragg reflector by controlling anodization temperature. Nanoscale Res. Lett. 4, 665–667 (2009)

    Google Scholar 

  92. Y. Su, G.T. Fei, Y. Zhang, H. Li, P. Yan, G.L. Shang, L. De Zhang, Anodic alumina photonic crystal heterostructures. J. Opt. Soc. Am. B 28, 2931 (2011)

    Google Scholar 

  93. G.D. Sulka, K. Hnida, Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization. Nanotechnology 23, 075303 (2012)

    Google Scholar 

  94. G.L. Shang, G.T. Fei, S.H. Xu, P. Yan, L. De Zhang, Preparation of the very uniform pore diameter of anodic alumina oxidation by voltage compensation mode. Mater. Lett. 110, 156–159 (2013)

    Google Scholar 

  95. G.L. Shang, G.T. Fei, Y. Zhang, P. Yan, S.H. Xu, H.M. Ouyang, L.De Zhang, Fano resonance in anodic aluminum oxide based photonic crystals. Sci. Rep. 4, 3601 (2014)

    Google Scholar 

  96. X.-X. Fu, X.-N. Kang, B. Zhang, C. Xiong, X.-Z. Jiang, D.-S. Xu, W.-M. Du, G.-Y. Zhang, Light transmission from the large-area highly ordered epoxy conical pillar arrays and application to GaN-based light emitting diodes. J. Mater. Chem. 21, 9576 (2011)

    Google Scholar 

  97. X. Sheng, J. Liu, N. Coronel, A.M. Agarwal, J. Michel, L.C. Kimerling, Integration of self-assembled porous alumina and distributed bragg reflector for light trapping in Si photovoltaic devices. IEEE Photonics Technol. Lett. 22, 1394–1396 (2010)

    Google Scholar 

  98. A. Santos, V.S. Balderrama, M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Nanoporous anodic alumina barcodes: toward smart optical biosensors. Adv. Mater. 24, 1050–1054 (2012)

    Google Scholar 

  99. M. Saito, M. Shibasaki, S. Nakamura, M. Miyagi, Optical waveguides fabricated in anodic alumina films. Opt. Lett. 19, 710 (1994)

    Google Scholar 

  100. A. Yamaguchi, K. Hotta, N. Teramae, Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film. Anal. Chem. 81, 105–111 (2009)

    Google Scholar 

  101. F. Trivinho-Strixino, H.A. Guerreiro, C.S. Gomes, E.C. Pereira, F.E.G. Guimarães, Active waveguide effects from porous anodic alumina: An optical sensor proposition. Appl. Phys. Lett. 97, 011902 (2010)

    Google Scholar 

  102. A. Gitsas, B. Yameen, T.D. Lazzara, M. Steinhart, H. Duran, W. Knoll, Polycyanurate nanorod arrays for optical-waveguide-based biosensing. Nano Lett. 10, 2173–2177 (2010)

    Google Scholar 

  103. K. Hotta, A. Yamaguchi, N. Teramae, Deposition of polyelectrolyte multilayer film on a nanoporous alumina membrane for stable label-free optical biosensing. J. Phys. Chem. C 116, 23533–23539 (2012)

    Google Scholar 

  104. T.D. Lazzara, I. Mey, C. Steinem, A. Janshoff, Benefits and limitations of porous substrates as biosensors for protein adsorption. Anal. Chem. 83, 5624–5630 (2011)

    Google Scholar 

  105. C. Fu, Y. Gu, Z. Wu, Y. Wang, S. Xu, W. Xu, Surface-enhanced Raman scattering (SERS) biosensing based on nanoporous dielectric waveguide resonance. Sensors Actuators B Chem. 201, 173–176 (2014)

    Google Scholar 

  106. Y. Du, L. Shi, T. He, X. Sun, Y. Mo, SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template. Appl. Surf. Sci. 255, 1901–1905 (2008)

    Google Scholar 

  107. M. Shaban, A.G.A. Hady, M. Serry, A new sensor for heavy metals detection in aqueous media. IEEE Sens. J. 14, 436–441 (2014)

    Google Scholar 

  108. D.-K. Kim, K. Kerman, H.M. Hiep, M. Saito, S. Yamamura, Y. Takamura, Y.-S. Kwon, E. Tamiya, Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures. Anal. Biochem. 379, 1–7 (2008)

    Google Scholar 

  109. D.-K. Kim, K. Kerman, S. Yamamura, Y.-S. Kwon, Y. Takamura, E. Tamiya, Label-free optical detection of protein antibody-antigen interaction on Au capped porous anodic alumina layer chip. Jpn. J. Appl. Phys. 47, 1351–1354 (2008)

    Google Scholar 

  110. S.-H. Yeom, O.-G. Kim, B.-H. Kang, K.-J. Kim, H. Yuan, D.-H. Kwon, H.-R. Kim, S.-W. Kang, Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference. Opt. Express 19, 22882–22891 (2011)

    Google Scholar 

  111. E.J. Anglin, M.P. Schwartz, V.P. Ng, L.A. Perelman, M.J. Sailor, Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir 20, 11264–11269 (2004)

    Google Scholar 

  112. K.-P.S. Dancil, D.P. Greiner, M.J. Sailor, A porous silicon optical biosensor: detection of reversible binding of IgG to a protein a-modified surface. J. Am. Chem. Soc. 121, 7925–7930 (1999)

    Google Scholar 

  113. M.M. Orosco, C. Pacholski, M.J. Sailor, Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat. Nanotechnol. 4, 255–258 (2009)

    Google Scholar 

  114. E.C. Wu, J.S. Andrew, L. Cheng, W.R. Freeman, L. Pearson, M.J. Sailor, Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32, 1957–1966 (2011)

    Google Scholar 

  115. T. Kumeria, M.M. Rahman, A. Santos, J. Ferré-Borrull, L.F. Marsal, D. Losic, Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. Anal. Chem. 86, 1837–1844 (2014)

    Google Scholar 

  116. S. Pan, L.J. Rothberg, Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates. Nano Lett. 3, 811–814 (2003)

    Google Scholar 

  117. J.-C. Lee, J.Y. An, B.-W. Kim, Application of anodized aluminium oxide as a biochip substrate for a Fabry–Perot interferometer. J. Chem. Technol. Biotechnol. 82, 1045–1052 (2007)

    Google Scholar 

  118. T. Kumeria, D. Losic, Reflective interferometric gas sensing using nanoporous anodic aluminium oxide (AAO). Phys. Status Solidi Rapid Res. Lett 5, 406–408 (2011)

    Google Scholar 

  119. T. Kumeria, L. Parkinson, D. Losic, A nanoporous interferometric micro-sensor for biomedical detection of volatile sulphur compounds. Nanoscale Res. Lett. 6, 634 (2011)

    Google Scholar 

  120. T. Kumeria, A. Santos, D. Losic, Ultrasensitive nanoporous interferometric sensor for label-free detection of gold(III) ions. ACS Appl. Mater. Interfaces 5, 11783–11790 (2013)

    Google Scholar 

  121. T. Kumeria, M.D. Kurkuri, K.R. Diener, L. Parkinson, D. Losic, Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens. Bioelectron. 35, 167–173 (2012)

    Google Scholar 

  122. Y. He, X. Li, L. Que, A transparent nanostructured optical biosensor. J. Biomed. Nanotechnol. 10, 767–774 (2014)

    Google Scholar 

  123. J. Álvarez, L. Sola, M. Cretich, M.J. Swann, K.B. Gylfason, T. Volden, M. Chiari, D. Hill, Real time optical immunosensing with flow-through porous alumina membranes. Sens. Actuators B Chem. 202, 834–839 (2014)

    Google Scholar 

  124. A. Santos, J. Pallarès, P. Formentín, M. Alba, J. Ferré-Borrull, L.F. Marsal, V.S. Balderrama, Tunable Fabry-Pérot interferometer based on nanoporous anodic alumina for optical biosensing purposes. Nanoscale Res. Lett. 7, 370 (2012)

    Google Scholar 

  125. T. Kumeria, D. Losic, Controlling interferometric properties of nanoporous anodic aluminium oxide. Nanoscale Res. Lett. 7, 88 (2012)

    Google Scholar 

  126. D.-L. Guo, L.-X. Fan, F.-H. Wang, S.-Y. Huang, X.-W. Zou, Porous anodic aluminum oxide bragg stacks as chemical sensors. J. Phys. Chem. C 112, 17952–17956 (2008)

    Google Scholar 

  127. P. Yan, G.T. Fei, G.L. Shang, B. Wu, L. De Zhang, Fabrication of one-dimensional alumina photonic crystals with a narrow band gap and their application to high-sensitivity sensors. J. Mater. Chem. C 1, 1659 (2013)

    Google Scholar 

  128. G.L. Shang, G.T. Fei, Y. Zhang, P. Yan, S.H. Xu, L.De Zhang, Preparation of narrow photonic bandgaps located in the near infrared region and their applications in ethanol gas sensing. J. Mater. Chem. C 1, 5285 (2013)

    Google Scholar 

  129. T. Kumeria, A. Santos, M.M. Rahman, J. Ferré-Borrull, L.F. Marsal, D. Losic, Advanced structural engineering of nanoporous photonic structures: tailoring nanopore architecture to enhance sensing properties. ACS Photonics 1, 1298–1306 (2014)

    Google Scholar 

  130. T. Kumeria, A. Santos, D. Losic, Nanoporous anodic alumina platforms: engineered surface chemistry and structure for optical sensing applications. Sensors (Basel). 14, 11878–11918 (2014)

    Google Scholar 

  131. A. Santos, T. Kumeria, D. Losic, Nanoporous anodic alumina: a versatile platform for optical biosensors. Materials (Basel). 7, 4297–4320 (2014)

    Google Scholar 

  132. A. Santos, P. Formentín, J. Pallarès, J. Ferré-Borrull, L.F. Marsal, Structural engineering of nanoporous anodic alumina funnels with high aspect ratio. J. Electroanal. Chem. 655, 73–78 (2011)

    Google Scholar 

  133. J. Pepper, R. Noring, M. Klempner, B. Cunningham, A. Petrovich, R. Bousquet, C. Clapp, J. Brady, B. Hugh, Detection of proteins and intact microorganisms using microfabricated flexural plate silicon resonator arrays. Sens. Actuators B Chem. 96, 565–575 (2003)

    Google Scholar 

  134. A. Santos, G. MacÍas, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Photoluminescent enzymatic sensor based on nanoporous anodic alumina. ACS Appl. Mater. Interfaces 4, 3584–3588 (2012)

    Google Scholar 

  135. X. Li, Y. He, L. Que, Fluorescence detection and imaging of biomolecules using the micropatterned nanostructured aluminum oxide. Langmuir 29, 2439–2445 (2013)

    Google Scholar 

  136. L.F. Huang, M. Saito, M. Miyagi, K. Wada, Graded index profile of anodic alumina films that is induced by conical pores. Appl. Opt. 32, 2039–2044 (1993)

    Google Scholar 

  137. T. Yanagishita, T. Kondo, K. Nishio, H. Masuda, Optimization of antireflection structures of polymer based on nanoimprinting using anodic porous alumina. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct 26, 1856–1859 (2008)

    Google Scholar 

  138. G. Hubbard, M.E. Nasir, P. Shields, C.R. Bowen, A. Satka, K.P. Parsons, N.H. Holmes, D.W.E. Allsopp, Angle dependent optical properties of polymer films with a biomimetic anti-reflecting surface replicated from cylindrical and tapered nanoporous alumina. Nanotechnology 23, 155302 (2012)

    Google Scholar 

  139. J. Chen, B. Wang, Y. Yang, Y. Shi, G. Xu, P. Cui, Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings. Appl. Opt. 51, 6839–6843 (2012)

    Google Scholar 

  140. T. Kato, S. Hayase, Quasi-solid dye sensitized solar cell with straight ion paths. J. Electrochem. Soc. 154, B117 (2007)

    Google Scholar 

  141. P. Granero, V.S. Balderrama, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Two-dimensional finite-element modeling of periodical interdigitated full organic solar cells. J. Appl. Phys. 113, 043107 (2013)

    Google Scholar 

  142. P. Granero, V.S. Balderrama, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Light absorption modeling of ordered bulk heterojunction organic solar cells. Curr. Appl. Phys. 13, 1801–1807 (2013)

    Google Scholar 

  143. K. Choi, S.H. Park, Y.M. Song, Y.T. Lee, C.K. Hwangbo, H. Yang, H.S. Lee, Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film. Adv. Mater. 22, 3713–3718 (2010)

    Google Scholar 

  144. C.-F. Lai, C.-H. Chao, H.-C. Kuo, H.-H. Yen, C.-E. Lee, W.-Y. Yeh, Directional light extraction enhancement from GaN-based film-transferred photonic crystal light-emitting diodes. Appl. Phys. Lett. 94, 123106 (2009)

    Google Scholar 

  145. D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y.S. Park, J. Cho, J.S. Im, C. Sone, Y. Park, W.J. Choi, Q.-H. Park, Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns. Appl. Phys. Lett. 87, 203508 (2005)

    Google Scholar 

  146. D. Tao, Z. Bei, Z. Zhen-Sheng, L. Dan, W. Xiao, B. Kui, K. Xiang-Ning, X. Jun, Y. Da-Peng, Z. Xing, Surface light extraction mapping from two-dimensional array of 12-fold photonic quasicrystal on current injected GaN-based LEDs. Chinese Phys. Lett. 24, 979–982 (2007)

    Google Scholar 

  147. J.J. Wierer, A. David, M.M. Megens, III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics 3, 163–169 (2009)

    Google Scholar 

  148. C. Xiong, B. Zhang, X. Kang, T. Dai, G. Zhang, Diffracted transmission effects of GaN and polymer two-dimensional square-lattice photonic crystals. Opt. Express 17, 23684–23689 (2009)

    Google Scholar 

  149. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, T. Tamamura, Photonic crystal using anodic porous alumina. Jap. J. Appl. Phys., Part 2 Lett. 38, (1999)

    Google Scholar 

  150. H. Masuda, M. Ohya, H. Asoh, K. Nishio, Photonic band gap in naturally occurring ordered anodic porous alumina. Jap. J. Appl. Phys., Part 2 Lett. 40, (2001)

    Google Scholar 

  151. L.N. Acquaroli, R. Urteaga, C.L.A. Berli, R.R. Koropecki, Capillary filling in nanostructured porous silicon. Langmuir 27, 2067–2072 (2011)

    Google Scholar 

  152. E. Elizalde, R. Urteaga, R.R. Koropecki, C.L.A. Berli, Inverse problem of capillary filling. Phys. Rev. Lett. 112, 134502 (2014)

    Google Scholar 

  153. R. Urteaga, L.N. Acquaroli, R.R. Koropecki, A. Santos, M. Alba, J. Pallarès, L.F. Marsal, C.L.A. Berli, Optofluidic characterization of nanoporous membranes. Langmuir 29, 2784–2789 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluis F. Marsal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferré-Borrull, J., Xifré-Pérez, E., Pallarès, J., Marsal, L.F. (2015). Optical Properties of Nanoporous Anodic Alumina and Derived Applications. In: Losic, D., Santos, A. (eds) Nanoporous Alumina. Springer Series in Materials Science, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-20334-8_6

Download citation

Publish with us

Policies and ethics