Skip to main content

Soft and Hard Surface Manipulation of Nanoporous Anodic Aluminum Oxide (AAO)

  • Chapter
  • First Online:
Nanoporous Alumina

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 219))

Abstract

Nanoporous materials with straight channels have attracted considerable interest due to their unique physical properties and many potential applications such as separation, sensing, biomedical and electronics. For the last few decades, nanoporous alumina or anodic aluminium oxide (AAO) membrane is gaining attention due to its broad applicability in various applications. The unique properties of AAO membrane coupled with tunable surface modification and properties is playing an increasingly important platform in a diverse range of applications such as separation, energy storage, drug delivery and template synthesis, as well as biosensing, tissue engineering and catalytic studies. This chapter aims to introduce the recent advances and challenges for surface manipulation of AAO following the ‘soft’ and ‘hard’ modification strategies. The functions of these modified nanostructures materials and latest important applications are evaluated with respect to improved performance and possible implications of those strategies for the future trends of surface engineering are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.S. Lin, Microporous and dense inorganic membranes: current status and prospective. Sep. Purif. Technol. 25(1–3), 39–55 (2001)

    Google Scholar 

  2. Y. Liu, J. Goebl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42(7), 2610–2653 (2013)

    Google Scholar 

  3. S. Meoto, M.-O. Coppens, Anodic alumina-templated synthesis of mesostructured silica membranes—current status and challenges. J. Mater. Chem. A 2(16), 5640–5654 (2014)

    Google Scholar 

  4. D.J. Odom, L.A. Baker, C.R. Martin, Solvent-extraction and langmuir-adsorption-based transport in chemically functionalized nanopore membranes. J. Phys. Chem. B 109(44), 20887–20894 (2005)

    Google Scholar 

  5. A. Debrassi et al., Stability of (Bio)functionalized porous aluminum oxide. Langmuir 30(5), 1311–1320 (2014)

    Google Scholar 

  6. C.-C. Wu et al., Electrochemical impedance spectroscopy analysis of A-beta (1–42) peptide using a nanostructured biochip. Electrochim. Acta 134, 249–257 (2014)

    Google Scholar 

  7. T. Kumeria et al., Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens. Bioelectron. 35(1), 167–173 (2012)

    Google Scholar 

  8. Y.-T. Tung et al., Nanostructured electrochemical biosensor for the detection of the weak binding between the dengue virus and the CLEC5A receptor. Nanomed. Nanotechnol. Biol. Med. 10(6), 1335–1341 (2014)

    Google Scholar 

  9. S.-H. Yeom et al., Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation. Sens. Actuators B: Chem. 177, 376–383 (2013)

    Google Scholar 

  10. A. Santos, T. Kumeria, D. Losic, Nanoporous anodic aluminum oxide for chemical sensing and biosensors. TrAC Trends Anal. Chem. 44, 25–38 (2013)

    Google Scholar 

  11. Q.T.H. Le et al., Ultra-thin gates for the transport of phenol from supported liquid membranes to permanent surface modified membranes. J. Membr. Sci. 205(1–2), 213–222 (2002)

    Google Scholar 

  12. V. Smuleac et al., Polythiol-functionalized alumina membranes for mercury capture. J. Membr. Sci. 251(1–2), 169–178 (2005)

    Google Scholar 

  13. E.K. Schmitt et al., Electrically insulating pore-suspending membranes on highly ordered porous alumina obtained from vesicle spreading. Soft Matter 4(2), 250–253 (2008)

    Google Scholar 

  14. A. Janshoff, C. Steinem, Transport across artificial membranes–an analytical perspective. Anal. Bioanal. Chem. 385(3), 433–451 (2006)

    Google Scholar 

  15. C. Hennesthal, J. Drexler, C. Steinem, Membrane-suspended nanocompartments based on ordered pores in alumina. ChemPhysChem 3(10), 885–889 (2002)

    Google Scholar 

  16. C. Horn, C. Steinem, Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes. Biophys. J. 89(2), 1046–1054 (2005)

    Google Scholar 

  17. I. Mey, C. Steinem, A. Janshoff, Biomimetic functionalization of porous substrates: towards model systems for cellular membranes. J. Mater. Chem. 22(37), 19348–19356 (2012)

    Google Scholar 

  18. L. Treccani et al., Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 9(7), 7115–7150 (2013)

    Google Scholar 

  19. A.Y. Ku et al., Evidence of ion transport through surface conduction in alkylsilane-functionalized nanoporous ceramic membranes. Langmuir 22(20), 8277–8280 (2006)

    Google Scholar 

  20. L. Velleman et al., Structural and chemical modification of porous alumina membranes. Microporous Mesoporous Mater. 126(1–2), 87–94 (2009)

    Google Scholar 

  21. Z.D. Hendren, J. Brant, M.R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation. J. Membr. Sci. 331(1–2), 1–10 (2009)

    Google Scholar 

  22. K.C. Popat et al., Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). Langmuir 20(19), 8035–8041 (2004)

    Google Scholar 

  23. K.E. La Flamme et al., Biocompatibility of nanoporous alumina membranes for immunoisolation. Biomaterials 28(16), 2638–2645 (2007)

    Google Scholar 

  24. E.D. Steinle et al., Ion channel mimetic micropore and nanotube membrane sensors. Anal. Chem. 74(10), 2416–2422 (2002)

    Google Scholar 

  25. A.M.M. Jani et al., Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chem. Commun. 21, 3062–3064 (2009)

    Google Scholar 

  26. A.M.M. Jani et al., Dressing in layers: layering surface functionalities in nanoporous aluminum oxide membranes. Angew. Chem. 122(43), 8105–8109 (2010)

    Google Scholar 

  27. J. Yu, Y. Zhang, S. Liu, Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosens. Bioelectron. 55, 307–312 (2014)

    Google Scholar 

  28. C.-K. Joung et al., A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk. Biosens. Bioelectron. 44, 210–215 (2013)

    Google Scholar 

  29. Z. Yang et al., Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. Biosens. Bioelectron. 22(12), 3283–3287 (2007)

    Google Scholar 

  30. I. Vlassiouk et al., “Direct” detection and separation of DNA using nanoporous alumina filters. Langmuir 20(23), 9913–9915 (2004)

    Google Scholar 

  31. P. Takmakov, I. Vlassiouk, S. Smirnov, Application of anodized aluminum in fluorescence detection of biological species. Anal. Bioanal. Chem. 385(5), 954–958 (2006)

    Google Scholar 

  32. M.M.J. Abdul et al., Pore spanning lipid bilayers on silanised nanoporous alumina membranes, in SPIE (2008)

    Google Scholar 

  33. B. Demé, D. Marchal, Polymer-cushioned lipid bilayers in porous alumina. Eur. Biophys. J. 34(2), 170–179 (2005)

    Google Scholar 

  34. E.E. Leary Swan, K.C. Popat, T.A. Desai, Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials 26(14), 1969–1976 (2005)

    Google Scholar 

  35. J.R. Stephens, J.S. Beveridge, M.E. Williams, Diffusive flux of nanoparticles through chemically modified alumina membranes. Analyst 136(18), 3797–3802 (2011)

    Google Scholar 

  36. W. Shi et al., Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation. J. Membr. Sci. 325(2), 801–808 (2008)

    Google Scholar 

  37. I. Vlassiouk, P. Takmakov, S. Smirnov, Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir 21(11), 4776–4778 (2005)

    Google Scholar 

  38. W.W. Ye et al., A nanoporous membrane based impedance sensing platform for DNA sensing with gold nanoparticle amplification. Sens. Actuators B: Chem. 193, 877–882 (2014)

    Google Scholar 

  39. X. Wang, S. Smirnov, Label-free DNA sensor based on surface charge modulated ionic conductance. ACS Nano 3(4), 1004–1010 (2009)

    Google Scholar 

  40. S. Tanvir et al., Covalent immobilization of recombinant human cytochrome CYP2E1 and glucose-6-phosphate dehydrogenase in alumina membrane for drug screening applications. J. Membr. Sci. 329(1–2), 85–90 (2009)

    Google Scholar 

  41. K.H.A. Lau, H. Duran, W. Knoll, In situ characterization of N-carboxy anhydride polymerization in nanoporous anodic alumina. J. Phys. Chem. B 113(10), 3179–3189 (2009)

    Google Scholar 

  42. P.-F. Li et al., Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. J. Membr. Sci. 337(1–2), 310–317 (2009)

    Google Scholar 

  43. M.L. Bruening et al., Creation of Functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24(15), 7663–7673 (2008)

    Google Scholar 

  44. T. Sehayek et al., Template Synthesis of nanotubes by room-temperature coalescence of metal nanoparticles. Chem. Mater. 17(14), 3743–3748 (2005)

    Google Scholar 

  45. A.M.M. Jani, D.L.N.H. Voelcker, Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater Sci. 58, 636–704 (2013)

    Google Scholar 

  46. J.-B. Largueze, K.E. Kirat, S. Morandat, Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids Surf., B 79(1), 33–40 (2010)

    Google Scholar 

  47. D. Qi et al., Optical emission of conjugated polymers adsorbed to nanoporous alumina. Nano Lett. 3(9), 1265–1268 (2003)

    Google Scholar 

  48. P. Jain et al., High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes. Biomacromolecules 8(10), 3102–3107 (2007)

    Google Scholar 

  49. R. Barbey et al., Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 109(11), 5437–5527 (2009)

    Google Scholar 

  50. M. Nagale, B.Y. Kim, M.L. Bruening, Ultrathin, hyperbranched poly(acrylic acid) membranes on porous alumina supports. J. Am. Chem. Soc. 122(47), 11670–11678 (2000)

    Google Scholar 

  51. L. Sun et al., High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates. Chem. Mater. 18(17), 4033–4039 (2006)

    Google Scholar 

  52. Q. Fu et al., Reversible Control of free energy and topography of nanostructured surfaces. J. Am. Chem. Soc. 126(29), 8904–8905 (2004)

    Google Scholar 

  53. H.-J. Wang et al., Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations. J. Am. Chem. Soc. 128(50), 15954–15955 (2006)

    Google Scholar 

  54. S. Ma et al., A general approach for construction of asymmetric modification membranes for gated flow nanochannels. J. Mater. Chem. A 2(23), 8804–8814 (2014)

    Google Scholar 

  55. G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)

    Google Scholar 

  56. R.R. Costa, J.F. Mano, Polyelectrolyte multilayered assemblies in biomedical technologies. Chem. Soc. Rev. 43(10), 3453–3479 (2014)

    Google Scholar 

  57. A.M. Balachandra, J. Dai, M.L. Bruening, Enhancing the anion-transport selectivity of multilayer polyelectrolyte membranes by templating with Cu2+. Macromolecules 35(8), 3171–3178 (2002)

    Google Scholar 

  58. S.U. Hong, R. Malaisamy, M.L. Bruening, Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes. Langmuir 23(4), 1716–1722 (2007)

    Google Scholar 

  59. S.U. Hong, L. Ouyang, M.L. Bruening, Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes. J. Membr. Sci. 327(1–2), 2–5 (2009)

    Google Scholar 

  60. L. Ouyang, R. Malaisamy, M.L. Bruening, Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. J. Membr. Sci. 310(1–2), 76–84 (2008)

    Google Scholar 

  61. S.U. Hong, M.L. Bruening, Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes. J. Membr. Sci. 280(1–2), 1–5 (2006)

    Google Scholar 

  62. J. Dai, G.L. Baker, M.L. Bruening, Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption. Anal. Chem. 78(1), 135–140 (2005)

    Google Scholar 

  63. D.M. Dotzauer et al., Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett. 6(10), 2268–2272 (2006)

    Google Scholar 

  64. D.M. Dotzauer et al., Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds. Langmuir 25(3), 1865–1871 (2009)

    Google Scholar 

  65. N. Joseph et al., Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym. Chem. 5(6), 1817–1831 (2014)

    Google Scholar 

  66. Y. Lei, W. Cai, G. Wilde, Highly ordered nanostructures with tunable size, shape and properties: a new way to surface nano-patterning using ultra-thin alumina masks. Prog. Mater. Sci. 52, 465–639 (2007)

    Google Scholar 

  67. G. Wang, C. Shi., N. Zhao, X. Du, Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition. Mater. Lett. 61, 3795–3797 (2007)

    Google Scholar 

  68. H.P. Xiang, L. Chang, S. Chao, C.H. Ming, Carbon nanotubes prepared by anodic aluminum oxide template method. Chin. Sci. Bull. 57, 187–204 (2012)

    Google Scholar 

  69. M.R. Kim, D.K. Lee, D.-J. Jang, Template-based electrochemically controlled growth of segmented multimetal nanorods. J. Nanomater. 2010, 1–8 (2010)

    Google Scholar 

  70. S.J. Hurst, E.K. Payne, L. Qin, C.A. Mirkin, Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed. 45(17), 2672–2692 (2006)

    Google Scholar 

  71. C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 5193(6), 1961–1966 (1994)

    Google Scholar 

  72. M.S. Sachiko Ono, Hidetaka Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta 51, 827–833 (2005)

    Google Scholar 

  73. C.-H. Peng, T.-Y. Wu, C.-C. Hwang, A preliminary study on the synthesis and characterization of multilayered Ag/Co magnetic nanowires fabricated via the electrodeposition method. Sci. World J. 2013, 1–6 (2013)

    Google Scholar 

  74. C.-K. Chen, D.-S. Chan, C.-C. Lee, S.-H. Chen, Fabrication of orderly copper particle arrays on a multi-electrolyte-step anodic aluminum oxide template. J. Nanomater. 2013, 1–8 (2013)

    Google Scholar 

  75. A. Santos, L. Vojkuvka, J. Pallare´s, J. Ferre´-Borrull, L.F. Marsal, Cobalt and nickel nanopillars on aluminium substrates by direct current electrodeposition process. Nanoscale Res. Lett. 4, 1021–2028 (2009)

    Google Scholar 

  76. L.F. Dumee et al., The fabrication and surface functionalization of porous metal frameworks—a review. J. Mater. Chem. A 1(48), 15185–15206 (2013)

    Google Scholar 

  77. M. Platt, R.A.W. Dryfe, P.L. E.P.L. Roberts, Electrodeposition of palladium nanoparticles at the liquid/liquid interface using porous alumina templates. Electrochim. Acta 48, 3037–3046 (2003)

    Google Scholar 

  78. H.J. Lee, T. Yasukawa, M. Suzuki, S.H. Lee, T. Yao, Y. Taki, A. Tanaka, M. Kameyama, H. Shiku, T. Matsue, Simple and rapid preparation of vertically aligned gold nanoparticle arrays and fused nanorods in pores of alumina membrane based on positive dielectrophoresis. Sens. Actuators B, 136, 320–325 (2009)

    Google Scholar 

  79. T. Kondo, K. Nishio, H. Masuda, Surface enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina. Appl. Phys. Exp. 9, 0320001 (2009)

    Google Scholar 

  80. T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316–1319 (1993)

    Google Scholar 

  81. K. Nielscha, R.B. Wehrspohn, J. Barthela, J. Kirschnera, S.F. Fischerb, H. Kronmuller, T. Schweinbock, D. Weissc, U. Gosele, High density hexagonal nickel nanowire array. J. Magn. Magn. Mater 429, 234–240 (2002)

    Google Scholar 

  82. K. Nielsch, F. Müller, A.P. Li, U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12(8), 582–586 (2000)

    Google Scholar 

  83. J. Choi, G. Sauer, K. Nielsch, R.B. Wehrspohn, U. Gosele, Silver infiltration into monodomain porous alumina with adjustable pore diameter and with high aspect ratio. Chem. Mater. 15, 776–779 (2003)

    Google Scholar 

  84. L. Liu et al., Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane. Nanotechnology 33, 335604 (2008)

    Google Scholar 

  85. K. Kim, M. Kim, S.M. Cho, Pulsed electrodeposition of palladium nanowire arrays using AAO template. Mater. Chem. Phys. 96, 278–282

    Google Scholar 

  86. D. Pecko, K.Z. Rožman, N. Kostevšek, M.S. Arshad, B. Markoli, Z. Samardzija, S. Kobe, Electrodeposited hard-magnetic Fe50Pd50 nanowires from an ammonium-citrate-based bath. J. Alloy. Compd. 605, 71–79 (2014)

    Google Scholar 

  87. J.K. Wang, J.M. Char, P.J. Lien, Optimization study on supercritical electrodeposition of nickel nanowire arrays using AAO template. ISRN Chem. Eng. 2012, 1–9 (2012)

    Google Scholar 

  88. D. Routkevitch, T. Bigioni., M. Moskovits, J.M. Xu, Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminium oxide templates. J. Phys. Chem. 100, 14037–14047 (1996)

    Google Scholar 

  89. D.S. Xu, Y.J. Xu, D.P. Chen, X. Shi, G.L. Guo, L.L. Gui, Y.Q. Tang, Preparation of CdS single-crystal nanowires by electrochemically induced deposition. Adv. Mater. 12, 520–522 (2000)

    Google Scholar 

  90. D.S. Xu, Y.J. Xu, D.P. Chen, G.L. Guo, L.L. Gui, Y.Q. Tang, Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminium ocide templates. Chem. Phys. Lett. 325, 340–344 (2000)

    Google Scholar 

  91. D.S. Xu, D.P. Chen, Y.J. Xu, X. Shi, G.L. Guo, L.L. Gui, Y.Q. Tang, Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminium oxide templates. Pure Appl. Chem. 72, 127–135 (2000)

    Google Scholar 

  92. J.D. Klein, R.D. Herrick, D. Palmer, M.J. Sailor, C.J. Brumlik, C.R. Martin, Electrochemical fabrication of cadmium chalcogenide microdiode arrays. Chem. Mater. Res. 5, 902 (1993)

    Google Scholar 

  93. H. Chen, Y.-M. Yeh, Y.T. Chen, Y.L. Jiang, Influence of growth conditions on hair-like CuS nanowires fabricated by electro-deposition and sulfurization. Ceram. Int. 40, 9757–9761 (2014)

    Google Scholar 

  94. J. Burdick, E. Alonas, H.-C. Huang, K. Rege, J. Wang, High-throughput templated multisegment synthesis of gold nanowires and nanorods. Nanotechnology 20, 065306 (2009)

    Google Scholar 

  95. N. Van Hoang, S. Kumar, G.H. Kim, Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications. Nanotechnology 20(12), 125607 (2009)

    Google Scholar 

  96. H. Wang, Y. Song, W. Liu, S. Yao, W. Zhang, Template synthesis and characterization of TiO2 nanotube arrays by the electrodeposition method. Mater. Lett. 93, 319–321 (2013)

    Google Scholar 

  97. F.E. Atalay, H. Kaya, V. Yagmur, S. Tari, S. Atalay, D. Avsar, The effect of back electrode on the formation of electrodeposited CoNiFe magnetic nanotubes and nanowires. Appl. Surf. Sci. 256, 2414–2418 (2010)

    Google Scholar 

  98. F. Grote, L. Wen, Y. Le, Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. J. Power Resour. 256, 37–42 (2014)

    Google Scholar 

  99. L. Binder, I. Gurrappa, Electrodeposition of nanostructured coatings and their characterization—a review. Sci. Technol. Adv. Mater. 9, 043001 (2008)

    Google Scholar 

  100. L.P. Bicelli, B. Bozzoni, C. Mele, L. D’Urzo, A review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci. 3, 356–408 (2008)

    Google Scholar 

  101. W. Wang, N. Li, X. Li, W. Geng, S. Qiu, Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition. Mater. Res. Bull. 41, 1417–1423 (2006)

    Google Scholar 

  102. A. Azizi, M. Mohammadi., S.K. Sadrnezhaad, End-closed NiCoFe-B nanotube arrays by electroless method. Mater. Lett. 65, 289–292 (2011)

    Google Scholar 

  103. M. Cheng, Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology 21(1), 015604 (2010)

    Google Scholar 

  104. L. Velleman et al., Raman spectroscopy probing of self-assembled monolayers inside the pores of gold nanotube membranes. Phys. Chem. Chem. Phys. 13(43), 19587–19593 (2011)

    Google Scholar 

  105. N. Li, X. Li, X. Yin, W. Wang, S. Qiu, Electroless deposition of open-end Cu nanotube arrays. Solid State Commun. 132, 841–844 (2004)

    Google Scholar 

  106. S.H. Zhang, Synthesis of silver nanotubes by electroless deposition in porous anodic aluminium oxide templates. Chem. Phys. Lett. 9, 1106–1107 (2004)

    Google Scholar 

  107. Y. Piao, H. Lim, J.Y. Chang, W.-Y. Lee, H. Kim, Nanostructured materials prepared by use of ordered porous alumina membranes. Electrochim. Acta 50, 2997–3013 (2005)

    Google Scholar 

  108. C. Kang, H. Lu, S. Yuan, D. Hong, K. Yan, B. Liang, Superhydrophilicity/superhydrophobicity of nickel micro-arrays fabricated by electroless deposition on an etched porous aluminum template. Chem. Eng. J. 203, 1–8 (2012)

    Google Scholar 

  109. X. Li, M. Wang, Y. Ye, K. Wu, Boron-doping Ni@Au nanotubes: facile synthesis, magnetic property, and in vitro cytotoxicity on Molt-4 cells. Mater. Lett. 108, 222–224 (2013)

    Google Scholar 

  110. I.R.A. Christie, H.O. Ali, A review of electroless gold deposition processes. Circuit World 11(4), 10–16 (1985)

    Google Scholar 

  111. S. Stojan, P.L.C. Djokić, Electroless deposition: theory and applications. Mod. Aspects Electrochem. 48, 251–289 (2010)

    Google Scholar 

  112. P.S. Cheow, Transport and separation of proteins across platinum-coated nanoporous alumina membranes. Electrochim. Acta 53(14), 4669–4673 (2008)

    Google Scholar 

  113. B.T.T. Nguyen, E.Z.C. Ting, C.S. Toh, Development of a biomimetic nanoporous membrane for the selective transport of charged proteins. Bioinspirat Biomim. 3(3), 035008 (2008)

    Google Scholar 

  114. T. Qiu, W. Zang, X. Lang, Y. Zhou, T. Cui, P.K. Chu, Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. Small 20, 2333–2337 (2009)

    Google Scholar 

  115. Y. Hu, J. Ge, Y. Yin, PDMS rubber as a single-source precursor for templated growth of silica nanotubes. Chem. Commun. 8, 914–916 (2009)

    Google Scholar 

  116. M.D. Dickey, E.A. Weiss., E.J. Smythe, R.C. Chiechi, F. Capasso, G.M. Whitesides, Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation. ACS Nano. 2(4), 800–808 (2008)

    Google Scholar 

  117. A. Pereira, F. Laplante, M. Chaker, D. Guay, Functionally modified macroporous membrane prepared by using pulsed laser deposition. Adv. Funct. Mater. 17(3), 443–450 (2007)

    Google Scholar 

  118. S. Wang, G.J. Yu, J.L. Gong, D.Z. Zhu, H.H. Xia, Large-area uniform nanodot arrays embedded in porous anodic alumina. Nanotechnology 18(1), 015303 (2007)

    Google Scholar 

  119. M. Lee, S.C. Hong, D. Kim, Formation of bamboo-like conducting carbon nanotubes decorated with Au nanoparticles by the thermal decomposition of sucrose in an AAO template. Carbon 50, 2465–2471 (2012)

    Google Scholar 

  120. K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser, Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Process Polym. 3(6–7), 392–418 (2006)

    Google Scholar 

  121. K. Vasilev, A. Michelmore, H.J. Griesserb, R.D. Short, Substrate influence on the initial growth phase of plasma-deposited polymer films. Chem. Commun. 2009, 3600–3602 (2009)

    Google Scholar 

  122. D.A. Brevnov, M.J. Brooks, G.P. López, P.B. Atanassov, Fabrication of anisotropic super hydrophobic/hydrophilic nanoporous membranes by plasma polymerization of C4F8 on anodic aluminum oxide. J. Electrochem. Soc. 151(8), 484–489 (2004)

    Google Scholar 

  123. D. Losic, M.A. Cole, B. Dollmann, K. Vasilev, H.J. Griesser, Surface modification of nanoporous alumina membranes by plasma polymerization. Nanotechnology 19(24), 245704 (2008)

    Google Scholar 

  124. S. Simovic, D. Losic, K. Vasilev, Controlled drug release from porous materials by plasma polymer deposition. Chem. Commun. 46(8), 1317–1319 (2010)

    Google Scholar 

  125. K. Choy, Chemical vapour deposition of coatings. Prog. Mater Sci. 48(2), 57–170 (2003)

    Google Scholar 

  126. J.-H. Park, T. Sudarshan, Chemical Vapor Deposition, 2nd ed., vol. 2. (ASM International, Ohio, 2001)

    Google Scholar 

  127. A. Popp, J. Engstler, J. Schneider, Porous carbon nanotube-reinforced metals and ceramics via a double templating approach. Carbon 47(14), 3208–3214 (2009)

    Google Scholar 

  128. K. Rana, G. Kucukayan-Dogu, E. Bengu, Growth of vertically aligned carbon nanotubes over self-ordered nano-porous alumina films and their surface properties. Appl. Surf. Sci. 258(18), 7112–7117 (2012)

    Google Scholar 

  129. S. Park et al., Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett. 9(4), 1325–1329 (2009)

    Google Scholar 

  130. S. Sigurdson et al., Effect of anodic alumina pore diameter variation on template-initiated synthesis of carbon nanotube catalyst supports. J. Mol. Catal. A: Chem. 306(1), 23–32 (2009)

    Google Scholar 

  131. J.L. Perry, C.R. Martin, J.D. Stewart, Drug delivery strategies by using template synthesized nanotubes. Chem. Eur. J. 17(23), 6296–6302 (2011)

    Google Scholar 

  132. C.-S. Li et al., Application of highly ordered carbon nanotubes templates to field-emission organic light-emitting diodes. J. Cry. Growth 311(3), 615–618 (2009)

    Google Scholar 

  133. J. Fang et al., Multipurpose nanoporous alumina-carbon nanowall bi-dimensional nano-hybrid platform via catalyzed and catalyst-free plasma CVD. Carbon 78, 627–632 (2014)

    Google Scholar 

  134. M. Sarno et al., Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane. Carbon 55, 10–22 (2013)

    Google Scholar 

  135. D. Mattia et al., Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films. J. Phys. Chem. B 110(20), 9850–9855 (2006)

    Google Scholar 

  136. T. Altalhi et al., Synthesis of well-organised carbon nanotube membranes from non-degradable plastic bags with tuneable molecular transport: towards nanotechnological recycling. Carbon 63, 423–433 (2013)

    Google Scholar 

  137. A. Tello et al., The synthesis of hybrid nanostructures of gold nanoparticles and carbon nanotubes and their transformation to solid carbon nanorods. Carbon 46(6), 884–889 (2008)

    Google Scholar 

  138. F. Thissandier et al., Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochim. Acta 117, 159–163 (2014)

    Google Scholar 

  139. E. Lefeuvre et al., Optimization of organized silicon nanowires growth inside porous anodic alumina template using hot wire chemical vapor deposition process. Thin Solid Films. 519(14), 4603–4608 (2011)

    Google Scholar 

  140. Q. Zhao et al., Synthesis of dense, single-crystalline CrO2 nanowire arrays using AAO template-assisted chemical vapor deposition. Nanotechnology 22(12), 125603 (2011)

    Google Scholar 

  141. G.O. Ince et al., One-dimensional surface-imprinted polymeric nanotubes for specific biorecognition by initiated chemical vapor deposition (iCVD). ACS Appl. Mater. Inter. 5(14), 6447–6452 (2013)

    Google Scholar 

  142. S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110(1), 111–131 (2009)

    Google Scholar 

  143. J. Antson, T. Suntola, Method for producing compound thin films. Asm America Inc., 1997, p. 430

    Google Scholar 

  144. S. Skoog, J. Elam, R. Narayan, Atomic layer deposition: medical and biological applications. Inter. Mater. Rev. 58(2), 113–129 (2013)

    Google Scholar 

  145. M. Knez, K. Nielsch, L. Niinista, Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19(21), 3425–3438 (2007)

    Google Scholar 

  146. D.J. Comstock et al., Tuning the composition and nanostructure of Pt/Ir films via anodized aluminum oxide templated atomic layer deposition. Adv. Funct. Mater. 20(18), 3099–3105 (2010)

    Google Scholar 

  147. K. Grigoras, V.-M. Airaksinen, S. Franssila, Coating of nanoporous membranes: atomic layer deposition versus sputtering. J. Nanosci. Nanotechnol. 9(6), 3763–3770 (2009)

    Google Scholar 

  148. A. Ott et al., Atomic layer controlled deposition of Al2O3 films using binary reaction sequence chemistry. Appl. Surf. Sci. 107, 128–136 (1996)

    Google Scholar 

  149. G. Xiong et al., Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes. J. Phys. Chem. B 109(29), 14059–14063 (2005)

    Google Scholar 

  150. V. Romero et al., Changes in morphology and ionic transport induced by ALD SiO2 coating of nanoporous alumina membranes. ACS Appl. Mater. Inter. 5(9), 3556–3564 (2013)

    Google Scholar 

  151. L. Velleman et al., Structural and chemical modification of porous alumina membranes. Micropor. Mesopor. Mat. 126(1), 87–94 (2009)

    Google Scholar 

  152. D.J. Comstock et al., Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition. Electrochem. Comm. 12(11), 1543–1546 (2010)

    Google Scholar 

  153. J. Bachmann et al., Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J. Am. Chem. Soc. 129(31), 9554–9555 (2007)

    Google Scholar 

  154. M. Norek et al., Plasmonic enhancement of blue emission from ZnO nanorods grown on the anodic aluminum oxide (AAO) template. Appl. Phys. A 111(1), 265–271 (2013)

    Google Scholar 

  155. K. Pitzschel et al., Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. ACS Nano 3(11), 3463–3468 (2009)

    Google Scholar 

  156. P. Banerjee et al., Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nano. 4(5), 292–296 (2009)

    Google Scholar 

  157. D. Gu et al., Synthesis of nested coaxial multiple-walled nanotubes by atomic layer deposition. ACS Nano 4(2), 753–758 (2010)

    Google Scholar 

  158. G. Pardon et al., Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores. Nanotechnology 24, 1–11 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors like to thank graduate students and collaborators whose has contributed greatly to this work. The support of our research by Malaysian’s Ministry of Higher Education (MOHE) under Grant FRGS 600-RMI/FRGS 5/3 (10/2013) and Ministry of Science, Technology and Innovation under Grant 100-RMI/SF 16/6/2 (8/2014) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Mutalib Md Jani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jani, A.M.M., Yazid, H., Habiballah, A.S., Mahmud, A.H., Losic, D. (2015). Soft and Hard Surface Manipulation of Nanoporous Anodic Aluminum Oxide (AAO). In: Losic, D., Santos, A. (eds) Nanoporous Alumina. Springer Series in Materials Science, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-20334-8_5

Download citation

Publish with us

Policies and ethics