Skip to main content

Structural Engineering of Porous Anodic Aluminum Oxide (AAO) and Applications

  • Chapter
  • First Online:
Nanoporous Alumina

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 219))

Abstract

Porous anodic aluminum oxide (AAO) films can be conveniently produced by anodization of aluminum. Porous oxide layer formed on aluminum contains a large number of mutually parallel pores. Each cylindrical nanopore and its surrounding oxide constitute a hexagonal cell aligned normal to the metal surface. Under proper conditions, the oxide cells are self-organized to form a hexagonally close-packed structure. The novel and tunable structural features of porous AAOs have been intensively exploited for templated synthesis of a variety of functional nanostructures and also for fabrication of nanodevices. On the other hand, porous AAOs with modulated pores may provide an additional degree of freedom in templated synthesis. In addition, they can be used as model systems for systematically investigating structure-property relations of nanostructured materials. Based on the anodization techniques developed recently, one can fabricate porous AAOs with tailor-made internal pore structures. This chapter is devoted to conveying the most recent advances in structural engineering of porous AAOs and nanotechnology applications. In order to provide context, a brief description is given of the general structure and fundamental electrochemical processes associated with pore formation. Subsequently, two common anodizing techniques (i.e., mild and hard anodizations) that have been explored for nanotechnology applications are discussed. Next, various nanostructuring approaches for custom-designed porous AAOs are reviewed. The chapter covers the properties of porous AAOs derived from structural engineering and their applications to various nanotechnology researches and finally presents the challenges and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Diggle, T.C. Downie, C.W. Goulding, Anodic oxide films on aluminum. Chem. Rev. 69, 365–405 (1969)

    Google Scholar 

  2. P.G. Sheasby, R. Pinner, The Surface Treatment and Finishing of Aluminum and Its Alloys, 6th edn. (Finishing Publications Ltd. & ASM International: Materials Park, Ohio, USA & Stevenage, UK, 2001)

    Google Scholar 

  3. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Google Scholar 

  4. W. Lee, S.J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014)

    Google Scholar 

  5. W. Lee, H. Han, A. Lotnyk, M.A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, U. Gösele, Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb in−2 density. Nat. Nanotechnol. 3, 402–407 (2008)

    Google Scholar 

  6. C.J. Ingham, J. ter Maat, W.M. de Vos, Where bio meets nano: The many uses for nanoporous aluminum oxide in biotechnology. Biotechnol. Adv. 30, 1089–1099 (2012)

    Google Scholar 

  7. S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Söderlund, C.R. Martin, Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296, 2198–2200 (2002)

    Google Scholar 

  8. P. Banerjee, I. Perez, L. Henn-Lecordier, S.B. Lee, G.W. Rubloff, Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 4, 292–296 (2009)

    Google Scholar 

  9. A.M.M. Jani, D. Losic, N.H. Voelcker, Nanoporous anodic aluminum oxide: advances in surface engineering and emerging applications. Prog. Mater Sci. 58, 636–704 (2013)

    Google Scholar 

  10. A. Santos, T. Kumeria, D. Losic, Nanoporous anodic alumina: a versatile platform for optical biosensors. Materials 7, 4297–4320 (2014)

    Google Scholar 

  11. J. Ferré-Borrull, J. Pallarès, G. Macías, L.F. Marsal, Nanostructural engineering of nanoporous anodic alumina for biosensing applications. Materials 7, 5225–5253 (2014)

    Google Scholar 

  12. T. Kumeria, A. Santos, D. Losic, Nanoporous anodic alumina platforms: engineered surface chemistry an structure for optical sensing applications. Sensors 14, 11878–11918 (2014)

    Google Scholar 

  13. A. Santos, T. Kumeria, D. Losic, Nanoporous anodic aluminum oxide for chemical sensing and biosensors. TrAC Trends Anal. Chem. 44, 25–38 (2013)

    Google Scholar 

  14. A. Güntherschulz, H. Betz, Neue Untersuchungen über die elecktrolytishe Ventilwirkung. Z. Phys. 68, 145–161 (1932)

    Google Scholar 

  15. A. Güntherschulz, H. Betz, Die Bewegung der Ionengitter von Isolatoren bei extremen electrischen Feldstärken. Z. Phys. 92, 367–374 (1934)

    Google Scholar 

  16. J.A. Davies, J.P.S. Pringle, R.L. Graham, F. Brown, A radiotracer study of anodic oxidation. J. Electrochem. Soc. 109, 999–1001 (1962)

    Google Scholar 

  17. J.A. Davies, B. Domeij, J.P.S. Pringle, F. Brown, The migration of metal and oxygen during anodic film formation. J. Electrochem. Soc. 112, 675–680 (1965)

    Google Scholar 

  18. F. Brown, W.D. Mackintosh, The use of Rutherford backscattering to study the behavior of ion-implanted atoms during anodic oxidation of Aluminum: Ar, Kr, Xe, K. Rb, Cs, Cl, Br, and I. J. Electrochem. Soc. 120, 1096–1102 (1973)

    Google Scholar 

  19. K. Shimizu, G.E. Thompson, G.C. Wood, Y. Xu, Direct observations of ion-implanted Xenon marker layers in anodic barrier films on aluminum. Thin Solid Films 88, 255–262 (1982)

    Google Scholar 

  20. G.E. Thompson, Porous anodic alumina: fabrication, characterization and applications. Thin Solid Films 297, 192–201 (1997)

    Google Scholar 

  21. C. Cherki, J. Siejka, Study by nuclear microanalysis and O18 tracer techniques of the oxygen transport processes and the growth laws for porous anodic oxide layers on aluminum. J. Electrochem. Soc. 120, 784–791 (1973)

    Google Scholar 

  22. J. Siejka, C. Ortega, An O18 study of field-assisted pore formation in compact anodic oxide films on aluminum. J. Electrochem. Soc. 124, 883–891 (1977)

    Google Scholar 

  23. P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Bubianes, C.E. Blanco-Pinzon, A tracer study of porous anodic alumina. Electrochem. Solid-State Lett. 9, B47–B51 (2006)

    Google Scholar 

  24. F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100, 411–419 (1953)

    Google Scholar 

  25. M.S. Hunter, P. Fowle, Factors affecting the formation of anodic oxide coatings. J. Electrochem. Soc. 101, 514–519 (1954)

    Google Scholar 

  26. T.P. Hoar, J. Yahalom, The initiation of pores in anodic oxide films formed on aluminum in acid solutions. J. Electrochem. Soc. 110, 614–621 (1963)

    Google Scholar 

  27. F. Li, L. Zhang, R.M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470–2480 (1998)

    Google Scholar 

  28. R.B. Mason, Factors affecting the formation of anodic oxide coatings in sulfuric acid electrolytes. J. Electrochem. Soc. 102, 671–675 (1955)

    Google Scholar 

  29. T.P. Hoar, N.F. Mott, A mechanism for the formation of porous anodic oxide films on aluminum. J. Phys. Chem. Solids 9, 97–99 (1959)

    Google Scholar 

  30. J.P. O’Sullivan, G.C. Wood, The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London, Ser. A 317, 511–543 (1970)

    Google Scholar 

  31. V.P. Parkhutik, V.I. Shershulsky, Theoretical modelling of porous oxide growth on aluminum. J. Phys. D Appl. Phys. 25, 1258–1263 (1992)

    Google Scholar 

  32. S.K. Thamida, H.-C. Chang, Nanoscale pore formation dynamics during aluminum anodization. Chaos 12, 240–251 (2002)

    Google Scholar 

  33. G.K. Singh, A.A. Golovin, I.S. Aranson, Formation of self-organized nanoscale porous structures in anodic aluminum oxide. Phys. Rev. B 73, 205422 (2006)

    Google Scholar 

  34. J. Oh, C.V. Thompson, The role of electric field in pore formation during aluminum anodization. Electrochim. Acta 56, 4044–4051 (2011)

    Google Scholar 

  35. A. Baron-Wiecheć, M.G. Burke, T. Hashimoto, H. Liu, P. Skeldon, G.E. Thompson, H. Habazaki, J.-J. Ganem, I.C. Vickridge, Tracer study of pore initiation in anodic alumina formed in phosphoric acid. Electrochim. Acta 113, 302–312 (2013)

    Google Scholar 

  36. K.R. Hebert, S.P. Albu, I. Paramasivam, P. Schmuki, Morphological instability leading to formation of porous anodic oxide films. Nat. Mater. 11, 162–166 (2012)

    Google Scholar 

  37. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, A flow model of porous anodic film growth on aluminum. Electrochim. Acta 52, 681–687 (2006)

    Google Scholar 

  38. S.J. Garcia-Vergara, D.L. Clere, T. Hashimoto, H. Habazaki, P. Skeldon, G.E. Thompson, Optimized observation of tungsten tracers for investigation of formation of porous anodic alumina. Electrochim. Acta 54, 6403–6411 (2009)

    Google Scholar 

  39. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Tracer studies of anodic films formed on aluminum in malonic and oxalic acids. Appl. Surf. Sci. 254, 1534–1542 (2007)

    Google Scholar 

  40. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, A tracer investigation of chromic acid anodizing of aluminium. Surf. Interface Anal. 39, 860–864 (2007)

    Google Scholar 

  41. J.E. Houser, K.R. Hebert, Stress-driven transport in ordered porous anodic films. Phys. Status Solidi A 205, 2396–2399 (2008)

    Google Scholar 

  42. J.E. Houser, K.R. Hebert, Modeling the potential distribution in porous anodic alumina films during steady-state growth. J. Electrochem. Soc. 153, B566–B573 (2006)

    Google Scholar 

  43. J.E. Houser, K.R. Hebert, The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat. Mater. 8, 415–420 (2009)

    Google Scholar 

  44. H. Masuda, M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. 35, L126–L129 (1996)

    Google Scholar 

  45. H. Masuda, E. Hasegawa, S. Ono, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127–L130 (1997)

    Google Scholar 

  46. A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998)

    Google Scholar 

  47. O. Nishinaga, T. Kikuchi, S. Natsui, R.O. Suzuki, Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing. Sci. Rep. 3, 2748 (2013). 10.1038/srep02748

  48. H. Masuda, K. Yada, A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37, L1340–L1342 (1998)

    Google Scholar 

  49. K. Nielsch, J. Choy, K. Schwirn, R.B. Wehrspohn, U. Gösele, Self-ordering regimes of porous alumina: the 10% porosity rule. Nano Lett. 2, 677–680 (2002)

    Google Scholar 

  50. S. Shingubara, K. Morimoto, H. Sakaue, T. Takahagi, Self-organization of a porous alumina nanohole array using a sulfuric/oxalic acid mixture as electrolyte. Electrochem. Solid-State Lett. 7, E15–E17 (2004)

    Google Scholar 

  51. C. Sun, J. Luo, L. Wu, J. Zhang, Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm. ACS Appl. Mater. Interfaces 2, 1299–1302 (2010)

    Google Scholar 

  52. J.M. Kape, The use of malonic acid as an anodising electrolyte. Metallurgia 60, 181–191 (1959)

    Google Scholar 

  53. J.M. Kape, Unusual anodizing processes and their practical significance. Electroplat. Metal Finish. 14, 407–415 (1961)

    Google Scholar 

  54. J.M. Kape, Anodizing in aqueous solutions of organic carboxylic acids. Trans. Inst. Met. Finish. 45, 34–42 (1967)

    Google Scholar 

  55. S. Ono, M. Saito, M. Ishiguro, H. Asoh, Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473–B478 (2004)

    Google Scholar 

  56. S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta 51, 827–833 (2005)

    Google Scholar 

  57. T. Kikuch, O. Nishinaga, S. Natsui, R.O. Suzuki, Self-ordering behavior of anodic porous alumina via selenic acid anodizing. Electrochim. Acta 137, 728–735 (2014)

    Google Scholar 

  58. I. Vrublevsky, V. Parkoun, J. Schreckenbach, G. Marx, Study of porous oxide film growth on aluminum in oxalic acid using a re-anodizing technique. Appl. Surf. Sci. 227, 282–292 (2004)

    Google Scholar 

  59. G.D. Sulka, K.G. Parkoła, Temperature influence on well-ordered nanopore structures grown by anodizing of aluminum in sulphuric acid. Electrochim. Acta 52, 1880–1888 (2007)

    Google Scholar 

  60. W. Chen, J.-S. Wu, X.-H. Xia, Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano 2, 959–965 (2008)

    Google Scholar 

  61. J. Martín, C.V. Manzano, O. Caballero-Calero, M. Martín-González, High-aspect-ratio and highly ordered 15-nm porous alumina templates. ACS Appl. Mater. Interf. 5, 72–79 (2013)

    Google Scholar 

  62. S. Ikonopisov, A. Girginov, M. Machkova, Post-breakdown anodization of aluminum. Electrochim. Acta 22, 1283–1286 (1977)

    Google Scholar 

  63. J.M. Albella, I. Montero, J.M. Martínez-Duart, Electron injection and avalanche during the anodic oxidation of tantalum. J. Electrochem. Soc. 131, 1101–1104 (1984)

    Google Scholar 

  64. S.Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, A. Yasumori, Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization. J. Electrochem. Soc. 153, B384–B391 (2006)

    Google Scholar 

  65. S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina induced by local current concentration: Burning. Electrochem. Solid-Sate Lett. 7, B21–B24 (2004)

    Google Scholar 

  66. G.C. Tu, I.T. Chen, K. Shimizu, The temperature rise and burning for high rate anodizing of aluminum in oxalic acid. J. Jpn. Inst. Light Met. 40, 382–389 (1990)

    Google Scholar 

  67. P. Csokán, Beiträge zur Kenntnis der anodischen Oxydation von Aluminium verdunnter, kalter Schwefelsaure. Metalloberfläche 15, B49–B53 (1961)

    Google Scholar 

  68. V.P. Csokán, M. Holló, Beitrag zur Frage des Bildungsmechanismus von anodisch erzeugten Hartoxydschichten. Werkst. Korros. 12, 288–295 (1961)

    Google Scholar 

  69. P. Csokán, C.C. Sc., Hard anodizing. Electroplat. Metal Finishing 15, 75–82 (1962)

    Google Scholar 

  70. P. Csokán, Some observations on the growth mechanism of hard anodic oxide coatings on aluminium. Trans. Inst. Met. Finish. 41, 51–56 (1964)

    Google Scholar 

  71. S. John, V. Balasubramanian, B.A. Shenoi, Hard anodizing aluminium and its alloys—AC in sulphuric acid—sodium sulphate bath. Met. Finish. 82, 33–39 (1984)

    Google Scholar 

  72. B. Olbertz, Hartanodisieren er¨offnet aluminum vielf¨altige technische Anwendungs-möglichkeiten. Aluminium 3, 268–270 (1988)

    Google Scholar 

  73. J.G. Hecker, Aluminum hard coats. Prod. Finish. 53, 88–92 (1988)

    Google Scholar 

  74. A. Rajendra, B.J. Parmar, A.K. Sharma, H. Bhojraj, M.M. Nayak, K. Rajanna, Hard anodisation of aluminium and its application to sensorics. Surf. Eng. 21, 193–197 (2005)

    Google Scholar 

  75. S.-Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori, Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubue arrays by high-field anodization. Adv. Mater. 17, 2115–2119 (2005)

    Google Scholar 

  76. K. Schwirn, Harte anodisation von aluminium mit Verdünnter Schwefeläure (Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 2008)

    Google Scholar 

  77. K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gösele, Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano 2, 302–310 (2008)

    Google Scholar 

  78. W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)

    Google Scholar 

  79. W. Lee, K. Nielsch, U. Gösele, Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization. Nanotechnology 18, 475713 (2007)

    Google Scholar 

  80. Y. Li, M. Zheng, L. Ma, W. Shen, Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology 17, 5101–5105 (2006)

    Google Scholar 

  81. Y.B. Li, M.J. Zheng, L. Ma, High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range. Appl. Phys. Lett. 91, 073109 (2007)

    Google Scholar 

  82. M.A. Kashi, A. Ramazani, M. Noormohammadi, M. Zarei, P. Marashi, Optimum self-ordered nanopore arrays with 130–270 nm interpore distances formed by hard anodization in sulfuric/oxalic acid mixtures. J. Phys. D Appl. Phys. 40, 7032–7040 (2007)

    Google Scholar 

  83. Y. Li, Z.Y. Ling, S.S. Chen, J.C. Wang, Fabrication of novel porous anodic alumina membranes by two-step hard anodization. Nanotechnology 19, 225604 (2008)

    Google Scholar 

  84. M.S. Hunter, P. Fowle, Determination of barrier layer thickness of anodic oxide coatings. J. Electrochem. Soc. 101, 481–485 (1954)

    Google Scholar 

  85. W. Lee, J.-C. Kim, U. Gösele, Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv. Funct. Mater. 20, 21–27 (2010)

    Google Scholar 

  86. S.-S. Tan, M.L. Reed, H. Han, R. Boudreau, High aspect ratio microstructures on porous anodic aluminum oxide. Proceedings of the 8th International Workshop on Microelectro Mechanical System (MEMS-95), Amsterdam, 1995; pp. 267–272

    Google Scholar 

  87. A.-P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina. Adv. Mater. 11, 483–487 (1999)

    Google Scholar 

  88. D. Routkevitch, A.N. Govyadinov, P.P. Mardilovich, High aspect ratio, high resolution ceramic MEMS. Proceedings of ASME International Mechanical Engineering, vol. 2, ASME Orlando, FL, 2000, pp. 39–44

    Google Scholar 

  89. D. Routkevitch, O. Polyakov, D. Deininger, C. Kostelecky, Nanostructured gas microsensor platform. In NSTI Nanotech, Anaheim 2, 266–268 (2005)

    Google Scholar 

  90. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770–2772 (1997)

    Google Scholar 

  91. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura, Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 13, 189–192 (2001)

    Google Scholar 

  92. I. Mikulskas, S. Juodkazis, R. Tomašiūnas, J.G. Dumas, Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 13, 1574–1577 (2001)

    Google Scholar 

  93. J. Choi, K. Nielsch, M. Reiche, R.B. Wehrspohn, U. Gösele, Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp. J. Vac. Sci. Technol., B 21, 763–766 (2003)

    Google Scholar 

  94. W. Lee, R. Ji, C.A. Ross, U. Gösele, K. Nielsch, Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography. Small 2, 978–982 (2006)

    Google Scholar 

  95. S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, G.A. Ozin, Highly ordered nanosphere imprinted nanochannel alumina (NINA). Adv. Mater. 16, 2193–2196 (2004)

    Google Scholar 

  96. H. Masuda, Y. Matsui, M. Yotsuya, F. Matsumoto, K. Nishio, Fabrication of highly ordered anodic porous alumina using self-organized polystyrene particle array. Chem. Lett. 33, 584–585 (2004)

    Google Scholar 

  97. C.Y. Liu, A. Datta, Y.L. Wang, Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 78, 120–122 (2001)

    Google Scholar 

  98. B. Chen, K. Lu, Z. Tian, Gradient and alternating diameter nanopore templates by focused ion beam guided anodization. Electrochim. Acta 56, 435–440 (2010)

    Google Scholar 

  99. B. Chen, K. Lu, Z. Tian, Novel patterns by focused ion beam guided anodization. Langmuir 27, 800–808 (2011)

    Google Scholar 

  100. R. Krishnan, C.V. Thompson, Monodomain high-aspect-ratio 2D and 3D ordered porous alumina structures with independently controlled pore spacing and diameter. Adv. Mater. 18, 988–992 (2007)

    Google Scholar 

  101. Z. Sun, H.K. Kim, Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films. Appl. Phys. Lett. 81, 3458–3460 (2010)

    Google Scholar 

  102. B. Kim, S. Park, T.J. McCarthy, T.P. Russell, Fabrication of ordered anodic aluminum oxide using a solvent-induced array of block-copolymer micelles. Small 3, 1869–1872 (2007)

    Google Scholar 

  103. T.S. Kustandi, W.W. Loh, H. Gao, H.Y. Low, Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography. ACS Nano 4, 2561–2568 (2010)

    Google Scholar 

  104. K.-L. Lai, M.-H. Hon, I.-C. Leu, Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching. Nanoscale Res. Lett. 6, 157 (2011)

    Google Scholar 

  105. H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina. Appl. Phys. Lett. 78, 826–828 (2001)

    Google Scholar 

  106. J.T. Smith, Q. Huang, A.D. Franklin, D.B. Janes, T.D. Sands, Highly ordered diamond and hybrid triangle-diamond patterns in porous anodic alumina thin films. Appl. Phys. Lett. 93, 043108 (2008)

    Google Scholar 

  107. G.E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S.H. Han, G.C. Wood, Anodic oxidation of aluminum. Philos. Mag. B 55, 651–667 (1987)

    Google Scholar 

  108. G.E. Thompson, R.C. Furneaux, G.C. Wood, Electron microscopy of ion beam thinned porous anodic films formed on aluminium. Corros. Sci. 18, 481–498 (1978)

    Google Scholar 

  109. I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, Analysis of chemical dissolution of the barrier layer of porous oxide on aluminum thin films using a re-anodizing technique. Appl. Surf. Sci. 252, 227–233 (2005)

    Google Scholar 

  110. S. Ono, H. Ichinose, N. Masuko, The high resolution observation of porous anodic films formed on alumium in phosphoric acid solution. Corros. Sci. 33, 841–850 (1992)

    Google Scholar 

  111. G.C. Wood, P. Skeldon, G.E. Thompson, K. Shimizu, A model for the incorporation of electrolyte species into anodic alumina. J. Electrochem. Soc. 143, 74–83 (1996)

    Google Scholar 

  112. H. Han, S.-J. Park, J.S. Jang, H. Ryu, K.J. Kim, S. Baik, W. Lee, In-situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide (AAO): non-uniform impurity distribution in anodic oxide. ACS Appl. Mater. Interfaces 5, 3441–3448 (2013)

    Google Scholar 

  113. Y. Yamamoto, N. Baba, S. Tajima, Coloured materials and photoluminescence centres in anodic film on aluminium. Nature 289, 572–584 (1981)

    Google Scholar 

  114. W.L. Xu, M.J. Zheng, S. Wu, W.Z. Sheng, Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membranes. Appl. Phys. Lett. 85, 4364–4366 (2004)

    Google Scholar 

  115. Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, X.G. Zhu, Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 74, 2951–2953 (1999)

    Google Scholar 

  116. G.H. Li, Y. Zhang, Y.C. Wu, L.D. Zhang, Wavelength dependent photoluminescence of anodic alumina membranes. J. Phys.: Condens. Matter 15, 8663–8671 (2003)

    Google Scholar 

  117. A. Santos, M. Alba, M.M. Rahman, P. Formentín, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids. Nanoscale Res. Lett. 7, 228 (2012)

    Google Scholar 

  118. S. Ono, N. Masuko, The duplex structure of cell walls of porous anodic films formed on aluminum. Corros. Sci. 33, 503–507 (1992)

    Google Scholar 

  119. G.E. Thompson, R.C. Furneaux, G.C. Wood, STEM/EDAS analysis of the cell walls in porous anodic films formed on aluminum. J. Electrochem. Soc. 125, 1480–1482 (1978)

    Google Scholar 

  120. M.C. Thornton, R.C. Furneaux, Transmission electron microscopy and digital X-ray mapping of ion-beam-thinned porous anodic films formed on aluminium. J. Mater. Sci. Lett. 10, 622–624 (1991)

    Google Scholar 

  121. K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, Y.D. Zheng, Photoluminescence oscillations in porous alumina films. Appl. Phys. Lett. 89, 201118 (2006)

    Google Scholar 

  122. D.A.G. Bruggeman, Derechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 24, 636–664 (1935)

    Google Scholar 

  123. A. Santos, V.S. Balderrama, M. Alba, P. Formentín, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Nanoporous anodic alumina barcodes: toward smart optical biosensors. Adv. Mater. 24, 1050–1054 (2012)

    Google Scholar 

  124. A. Santos, T. Kumeria, D. Losic, Optically optimized photoluminescent and interferometric biosensors based on nanoporous anodic alumina: a comparison. Anal. Chem. 85, 7904–7911 (2013)

    Google Scholar 

  125. F. Casanova, C.E. Chiang, C.-P. Li, I.V. Roshchin, A.M. Ruminski, M.J. Sailor, I.K. Schuller, Effect of surface interactions on the hysteresis of capillary condensation in nanopores. Europhys. Lett. 81, 26003 (2008)

    Google Scholar 

  126. F. Casanova, C.E. Chiang, C.-P. Li, I.V. Roshchin, A.M. Ruminski, M.J. Sailor, I.K. Schuller, Gas adsorption and capillary condensation in nanoporous alumina films. Nanotechnology 19, 315709 (2008)

    Google Scholar 

  127. S.D. Alvarez, C.-P. Li, C.E. Chiang, I.K. Schuller, M.J. Sailor, A label-free porous alumina interferometric immunosensor. ACS Nano 3, 3301–3307 (2009)

    Google Scholar 

  128. T. Kumeria, D. Losic, Reflective interferometric gas sensing using nanoporous anodic aluminium oxide (AAO). Phys. Status Solidi RRL 5, 406–408 (2011)

    Google Scholar 

  129. T. Kumeria, L. Parkinson, D. Losic, A nanoporous interferometric micro-sensor for biomedical detection of volatile sulphur compounds. Nanoscale Res. Lett. 6, 634 (2011)

    Google Scholar 

  130. T. Kumeria, D. Losic, Controlling interferometric properties of nanoporous anodic aluminum oxide. Nanoscale Res. Lett. 7, 88 (2012)

    Google Scholar 

  131. T. Kumeria, A. Santos, D. Losic, Ultrasensitive nanoporous interferometric sensor for label-free dection of gold(III) ions. ACS Appl. Mater. Interfaces 5, 11783–11790 (2013)

    Google Scholar 

  132. B. He, S.J. Son, S.B. Lee, Shape-coded silica nanotubes for biosensing. Langmuir 22, 8263–8265 (2006)

    Google Scholar 

  133. A. Santos, P. Formentín, J. Pallarès, J. Ferré-Borrull, L.F. Marsal, Structural engineering of nanoporous anodic alumina funnels with high aspect ratio. J. Electroanal. Chem. 655, 73–78 (2011)

    Google Scholar 

  134. B. He, S.J. Son, S.B. Lee, Suspension array with shape-coded silica nanotubes for multiplexed immunoassays. Anal. Chem. 79, 5257–5263 (2007)

    Google Scholar 

  135. J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, X. Gao, Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores. ACS Appl. Mater. Interfaces 4, 5678–5683 (2012)

    Google Scholar 

  136. A. Santos, T. Kumeria, Y. Wang, D. Losic, In situ monitored engineering of inverted nanoporous anodic alumina funnels: on the precise generation of 3D optical nanostructures. Nanoscale 6, 9991–9999 (2014)

    Google Scholar 

  137. T. Nagaura, F. Takeuchi, Y. Yamauchi, K. Wada, S. Inoue, Fabrication of ordered Ni nanocones using a porous anodic alumina template. Electrochem. Commun. 10, 681–685 (2008)

    Google Scholar 

  138. T. Nagaura, F. Takeuchi, S. Inoue, Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing. Electrochim. Acta 53, 2109–2114 (2008)

    Google Scholar 

  139. T. Yanagishita, T. Kondo, K. Nishio, H. Masuda, Optimization of antireflection structures of polymer based on nanoimprinting using anodic porous alumina. J. Vac. Sci. Technol., B 26, 1856–1859 (2008)

    Google Scholar 

  140. G. Macias, L.P. Hernández-Eguía, J. Ferré-Borrull, J. Pallares, L.F. Marsal, Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors. ACS Appl. Mater. Interfaces 5, 8093–8098 (2013)

    Google Scholar 

  141. H. Takahashi, M. Nagayama, H. Akahori, A. Kitahara, Electron-microscopy of porous anodic oxide films on alumium by ultra-thin sectioning technique. Part 1. The structural change of the film during the current recovery period. J. Electron Microscopy 22, 149–157 (1973)

    Google Scholar 

  142. J.W. Diggle, T.C. Downie, C.W. Goulding, Processes involved in reattainment of steady-state conditions for the anodizng of aluminum following formation voltage changes. J. Electrochem. Soc. 116, 737–740 (1969)

    Google Scholar 

  143. W. Lee, J.-C. Kim, Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 21, 485304 (2010)

    Google Scholar 

  144. W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gösele, Structural engineering of nanoporous anodic aluminum oxide by pulse anodization of aluminum. Nat. Nanotechnol. 3, 234–239 (2008)

    Google Scholar 

  145. R.C. Furneaux, W.R. Rigby, A.P. Davidson, The formation of controlled porosity membranes from anodically oxidized aluminium. Nature 337, 147–149 (1989)

    Google Scholar 

  146. J.M. Montero-Moreno, M. Belenguer, M. Sarret, C.M. Müller, Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochim. Acta 54, 2529–2535 (2009)

    Google Scholar 

  147. K. Nielsch, F. Müller, A.-P. Li, U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12, 582–586 (2000)

    Google Scholar 

  148. G. Sauer, G. Brehm, S. Chneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, U. Gösele, Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 91, 3243–3247 (2002)

    Google Scholar 

  149. W. Cheng, M. Steinhart, U. Gösele, R.B. Wehrspohn, Tree-like alumina nanopores generated in a non-steady-state anodization. J. Mater. Chem. 17, 3493–3495 (2007)

    Google Scholar 

  150. J. Choi, G. Sauer, K. Nielsch, R.B. Wehrspohn, U. Gösele, Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem. Mater. 15, 776–779 (2003)

    Google Scholar 

  151. W. Lee, R. Scholz, K. Nielsch, U. Gösele, A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. 44, 6050–6054 (2005)

    Google Scholar 

  152. G. Jeon, M. Jee, S.Y. Yang, B.-Y. Lee, S.K. Jang, J.K. Kim, Hierarchically self-organized monolithic nanoporous membrane for excellent virus enrichment. ACS Appl. Mater. Interfaces 6, 1200–1206 (2014)

    Google Scholar 

  153. J. Li, C. Papadopoulos, J. Xu, Growing Y-junction carbon nanotubes. Nature 402, 253–254 (1999)

    Google Scholar 

  154. C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev, J.M. Xu, Electronic transport in Y-junction carbon nanotubes. Phys. Rev. Lett. 85, 3476–3479 (2000)

    Google Scholar 

  155. Y.C. Sui, J.A. González-León, A. Bermúdez, J.M. Saniger, Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template. Carbon 39, 1709–1715 (2001)

    Google Scholar 

  156. T. Gao, G. Meng, J. Zhang, S. Sun, L. Zhang, Template synthesis of Y-junction metal nanowires. Appl. Phys. A 74, 403–406 (2002)

    Google Scholar 

  157. G. Meng, Y.J. Jung, A. Cao, R. Vajtai, P.M. Ajayan, Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Proc. Natl. Acad. Sci. U.S.A. 102, 7074–7078 (2005)

    Google Scholar 

  158. C. Shuoshuo, L. Zhiyuan, H. Xing, L. Yi, Controlled growth of branched channels by a factor of 1/√n anodizing voltage? J. Mater. Chem. 19, 5717–5719 (2009)

    Google Scholar 

  159. A.Y.Y. Ho, H. Gao, Y.C. Lam, I. Rodríguez, Controlled fabrication of multitiered three-dimensional nanostructures in porous alumina. Adv. Funct. Mater. 18, 2057–2063 (2008)

    Google Scholar 

  160. K. Pitzschel, J.M.M. Moreno, J. Escrig, O. Albrecht, K. Nielsch, J. Bachmann, Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. ACS Nano 3, 3463–3469 (2009)

    Google Scholar 

  161. D.J. Arrowsmith, A.W. Clifford, D.A. Moth, Fracture of anodic oxide formed on aluminum in sulphuric acid. J. Mater. Sci. Lett. 5, 921–922 (1986)

    Google Scholar 

  162. K. Wada, T. Shimohira, M. Amada, N. Baba, Microstructure of porous anodic oxide films on aluminium. J. Mater. Sci. 21, 3810–3816 (1986)

    Google Scholar 

  163. W. Lee, R. Scholz, U. Gösele, A continuous process for structurall well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano Lett. 8, 2155–2160 (2008)

    Google Scholar 

  164. K.E. La Flamme, G. Mor, D. Gong, T. La Tempa, V.A. Fusaro, C.A. Grimes, T.A. Desai, Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. Diabetes Technol. Ther. 7, 684–694 (2005)

    Google Scholar 

  165. E.E.L. Swan, K.C. Popat, C.A. Grimes, T.A. Desai, Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mater. Res., Part A 72A, 288–295 (2005)

    Google Scholar 

  166. B. Jongsomjit, J. Panpranot, J.G. Goodwin Jr, Co-support compound formation in alumina-supported cobalt catalysts. J. Catal. 204, 98–109 (2001)

    Google Scholar 

  167. E.P. Gusev, M. Copel, E. Cartier, I.J.R. Baumvol, C. Krug, M.A. Gribelyuk, High-resolution depth profiling in ultrathin Al2O3 films on Si. Appl. Phys. Lett. 76, 176–178 (2000)

    Google Scholar 

  168. Y. Wang, A. Santos, G. Kaur, A. Evdokiou, D.L. Losic Jr, Structurally engineered anodic alumina nanotubes as nano-carriers for delivery of anticancer therapeutics. Biomaterials 35, 5517–5526 (2014)

    Google Scholar 

  169. A. Santos, L. Vojkuvka, M. Alba, V.S. Balderrama, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Understanding and morphology control of pore modulations in nanoporous anodic alumina by discontinuous anodization. Phys. Status Solidi A 209, 2045–2048 (2012)

    Google Scholar 

  170. D. Losic, M. Lillo, D. Losic Jr, Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. Small 5, 1392–1397 (2009)

    Google Scholar 

  171. D. Losic, D. Losic Jr, Preparation of porous anodic alumina with periodically perforated pores. Langmuir 25, 5426–5431 (2009)

    Google Scholar 

  172. E.A. Avrutin, V.B. Gorfinkel, S. Luryi, K.A. Shore, Control of surface-emitting laser diodes by modulating the distributed Bragg mirror reflectivity: small-signal analysis. Appl. Phys. Lett. 63, 2460–2462 (1993)

    Google Scholar 

  173. J. Yoon, W. Lee, E.L. Thomas, Optically pumped surface-emitting lasing using self-assembled block-copolymer-distributed Bragg reflectors. Nano Lett. 6, 211–2214 (2006)

    Google Scholar 

  174. L. Chen, E. Towe, Nanowire lasers with distributed-Bragg-reflector mirrors. Appl. Phys. Lett. 89, 053125 (2006)

    Google Scholar 

  175. B. Wang, G.T. Fei, M. Wang, M.G. Kong, L.D. Zhang, Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 18, 365601 (2007)

    Google Scholar 

  176. W.J. Zheng, G.T. Fei, B. Wang, Z. Jin, L.D. Zhang, Distributed Bragg reflector made of anodic alumina membrane. Mater. Lett. 63, 706–708 (2009)

    Google Scholar 

  177. W.J. Zheng, G.T. Fei, B. Wang, L.D. Zhang, Modulation of transmission spectra of anodized alumina membrane distributed bragg reflector by controlling anodization temperature. Nanoscale Res. Lett. 4, 665–667 (2009)

    Google Scholar 

  178. G.L. Shang, G.T. Fei, Y. Zhang, P. Yan, S.H. Xu, L.D. Zhang, Preparation of narrow photonic bandgaps located in the near infrared region and their applications in ethanol gas sensing. J. Mater. Chem. C 1, 5285–5291 (2013)

    Google Scholar 

  179. G.L. Shang, G.T. Fei, Y. Zhang, P. Yan, S.H. Xu, H.M. Ouyang, L.D. Zhang, Fano resonance in anodic aluminum oxide based photonic crystals. Sci. Rep. 4, 3601 (2014)

    Google Scholar 

  180. G.L. Shang, G.T. Fei, S.H. Xu, P. Yan, L.D. Zhang, Preparation of the very uniform pore diameter of anodic alumina oxidation by voltage compensation mode. Mater. Lett. 110, 156–159 (2013)

    Google Scholar 

  181. H. Xing, L. Zhi-Yuan, C. Shuo-Shuo, H. Xin-Hua, Influence of light scattering on transmission spectra of photonic crystals of anodized alumina. Chin. Phys. Lett. 25, 3284–3287 (2008)

    Google Scholar 

  182. M.M. Rahman, L.F. Marsal, J. Pallarès, J. Ferré-Borrull, Tuning the photonic stop bands of nanoporous anodic alumina-based distributed bragg reflectors by pore widening. ACS Appl. Mater. Interfaces 5, 13375–13381 (2013)

    Google Scholar 

  183. T. Kumeria, M.M. Rahman, A. Santos, J. Ferré-Borrull, L.F. Marsal, D. Losic, Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. Anal. Chem. 86, 1837–1844 (2014)

    Google Scholar 

  184. T. Kumeria, M.M. Rahman, A. Santos, J. Ferré-Borrull, L.F. Marsal, D. Losic, Nanoporous anodic alumina rugate filters for sensing of ionic mercury: toward environmental point-of analysis systems. ACS Appl. Mater. Interfaces 6, 12971–12978 (2014)

    Google Scholar 

Download references

Acknowledgments

The financial support from the Hankuk University of Foreign Studies Research Fund of 20151176001 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, W. (2015). Structural Engineering of Porous Anodic Aluminum Oxide (AAO) and Applications. In: Losic, D., Santos, A. (eds) Nanoporous Alumina. Springer Series in Materials Science, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-20334-8_4

Download citation

Publish with us

Policies and ethics