Skip to main content

Theoretical Pore Growth Models for Nanoporous Alumina

  • Chapter
  • First Online:
Nanoporous Alumina

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 219))

Abstract

Nanoporous alumina has been extensively used in a wide range of applications, including template materials for various types of nanomaterials, high surface-area structures for energy conversation and storage, bio/chemo sensors, electronic/photonic devices, and so on. However, the formation mechanism of the nanopores and the subsequent pore growth process towards self-ordered pore arrangements have been under investigation for several decades without clear conclusions. The present models may be divided into two main groups in terms of the driving force for pore initialization, as well as the subsequent pore growth process. One group considers that the driving force is the high electric field across the oxide barrier layer at the bottom of the pore channels, which assists metal oxidation at the metal/oxide interface, and oxide dissolution at the oxide/electrolyte interface. The other group of models assumes that the driving force is mechanical stress originating from the volume expansion of the metal oxidation process. This chapter reviews the development of these models for nanoporous alumina formation, and discusses their advantages and shortcomings. A recent model proposed by us is also described, and potential directions for further development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Diggle, T.C. Downie, C.W. Goulding, Chem. Rev. 69, 365 (1969)

    Google Scholar 

  2. G.C. Wood, in Oxide and Oxide Films, vol. 2, ed. by J.W. Diggle (Marcel Dekker, New York, 1973), p. 167

    Google Scholar 

  3. G.E. Thompson, G.C. Wood, in Treatise on Materials Science and Technology, vol. 23, ed. by J.C. Scully (Academic Press, New York, 1983), p. 205

    Google Scholar 

  4. M.M. Lohrengel, Mater. Sci. Eng., R 11, 243 (1993)

    Google Scholar 

  5. H. Chik, J.M. Xu, Mater. Sci. Eng., R 43, 103 (2004)

    Google Scholar 

  6. B. Sakintuna, Y. Yurum, Ind. Eng. Chem. Res. 44, 2893 (2005)

    Google Scholar 

  7. H.T. Wang, J.F. Yao, Ind. Eng. Chem. Res. 45, 6393 (2006)

    Google Scholar 

  8. F. Cheng, Z. Tao, J. Liang, J. Chen, Chem. Mater. 20, 667 (2008)

    Google Scholar 

  9. C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M.A. Sung, H. Shin, Chem. Mater. 20, 756 (2008)

    Google Scholar 

  10. Y. Lei, S.K. Yang, M.H. Wu, G. Wilde, Chem. Soc. Rev. 40, 1247 (2011)

    Google Scholar 

  11. K. Okada, T. Isobe, K. Katsumata, Y. Kameshima, A. Nakajima, K.J.D. MacKenzie, Sci. Technol. Adv. Mater. 12, 064701 (2011)

    Google Scholar 

  12. H.M. Chen, R.S. Liu, J. Phys. Chem. C 115, 3513 (2011)

    Google Scholar 

  13. B. Platschek, A. Keilbach, T. Bein, Adv. Mater. 23, 2395 (2011)

    Google Scholar 

  14. A. de la Escosura-Muniz, A. Merkoci, ACS Nano 6, 7556 (2012)

    Google Scholar 

  15. Q. Hao, T. Qiu, P.K. Chu, Prog. Surf. Sci. 87, 23 (2012)

    Google Scholar 

  16. C.J. Ingham, J. ter Maat, W.M. de Vos, Biotechnol. Adv. 30, 1089 (2012)

    Google Scholar 

  17. J. Martin, J. Maiz, J. Sacristan, C. Mijangos, Polymer 53, 1149 (2012)

    Google Scholar 

  18. C. Nicolini, N. Bragazzi, E. Pechkova, Adv. Drug. Delivery Rev. 64, 1522 (2012)

    Google Scholar 

  19. C.R. Simovski, P.A. Belov, A.V. Atrashchenko, Y.S. Kivshar, Adv. Mater. 24, 4229 (2012)

    Google Scholar 

  20. J.T. Zhang, C.M. Li, Chem. Soc. Rev. 41, 7016 (2012)

    Google Scholar 

  21. M.E. Warkiani, A.A.S. Bhagat, B.L. Khoo, J. Han, C.T. Lim, H.Q. Gong, A.G. Fane, ACS Nano 7, 1882 (2013)

    Google Scholar 

  22. G. Tai, K. Wang, Z. Sun, J. Yin, S.M. Ng, J. Zhou, F. Yan, C.W. Leung, K.H. Wong, W. Guo, et al., J. Phys. Chem. C 116, 532 (2012)

    Google Scholar 

  23. T. Kondo, H. Masuda, K. Nishio, J. Phys. Chem. C 117, 2531 (2013)

    Google Scholar 

  24. M.H. Wu, L.Y. Wen, Y. Lei, S. Ostendorp, K. Chen, G. Wilde, Small 6, 695 (2010)

    Google Scholar 

  25. X.Y. Zhang, G.H. Wen, Y.F. Chan, R.K. Zheng, X.X. Zhang, N. Wang, Appl. Phys. Lett. 83, 3341 (2003)

    Google Scholar 

  26. D. Borissov, S. Isik-Uppenkamp, M. Rohwerder, J. Phys. Chem. C 113, 3133 (2009)

    Google Scholar 

  27. K.G. Biswas, H.E. Matbouly, V. Rawat, J.L. Schroeder, T.D. Sands, Appl. Phys. Lett. 95, 073108 (2009)

    Google Scholar 

  28. X.D. Li, G.W. Meng, Q.L. Xu, M.G. Kong, X.G. Zhu, Z.Q. Chu, A.P. Li, Nano Lett. 11, 1704 (2011)

    Google Scholar 

  29. J. Kim, H. Han, Y.H. Kim, S.H. Choi, J.C. Kim, W. Lee, ACS Nano 5, 3222 (2011)

    Google Scholar 

  30. S.L. Sung, S.H. Tsai, S.H. Tseng, F.K. Chiang, X.W. Liu, H.C. Shih, Appl. Phys. Lett. 74, 197 (1999)

    Google Scholar 

  31. H. Chun, M.G. Hahm, Y. Homma, R. Meritz, K. Kuramochi, L. Menon, L. Ci, P.M. Ajayan, Y.J. Jung, ACS Nano 3, 1274 (2009)

    Google Scholar 

  32. S.H. Jeong, H.Y. Hwang, K.H. Lee, Y. Jeong, Appl. Phys. Lett. 78, 2052 (2001)

    Google Scholar 

  33. S.A. Knaack, M. Redden, M. Onellion, Am. J. Phys. 72, 856 (2004)

    Google Scholar 

  34. J. Zou, X. Qi, L. Tan, B.J.H. Stadler, Appl. Phys. Lett. 89, 093106 (2006)

    Google Scholar 

  35. S. Hong, T. Kang, D. Choi, Y. Choi, L.P. Lee, ACS Nano 6, 5803 (2012)

    Google Scholar 

  36. Y.T. Chong, M.Y.E. Yau, Y. Yang, M. Zacharias, D. Gorlitz, K. Nielsch, J. Bachmann, J. Appl. Phys. 110, 043930 (2011)

    Google Scholar 

  37. M. Koohbor, S. Soltanian, M. Najafi, P. Servati, Mater. Chem. Phys. 131, 728 (2012)

    Google Scholar 

  38. X.W. Wang, Z.H. Yuan, B.C. Fang, Mater. Chem. Phys. 125, 1 (2011)

    Google Scholar 

  39. T. Kim, L. He, J.R. Morales, W.P. Beyermann, C.J. Bardeen, Nanotechnology 22, 455704 (2011)

    Google Scholar 

  40. V. Vega, T. Bohnert, S. Martens, M. Waleczek, J.M. Montero-Moreno, D. Gorlitz, V.M. Prida, K. Nielsch, Nanotechnology 23 465709 (2012)

    Google Scholar 

  41. D.C. Leitao, J. Ventura, C.T. Sousa, A.M. Pereira, J. B. Sousa, M. Vazquez, J.P. Araujo, Phys. Rev. B 84, 014410 (2011)

    Google Scholar 

  42. A. Santos, J.M. Montero-Moreno, J. Bachmann, K. Nielsch, P. Formentin, J. Ferre-Borrull, J. Pallares, L.F. Marsal, A.C.S. Appl, Mater. Interfaces 3, 1925 (2011)

    Google Scholar 

  43. J.H. Fang, I. Aharonovich, I. Leychenko, K. Ostrikov, P.G. Spizzirri, S. Rubanov, S. Prawer, Cryst. Growth Design 12, 2917 (2012)

    Google Scholar 

  44. X. Sheng, J.F. Liu, N. Coronel, A.M. Agarwal, J. Michel, L.C. Kimerling, I.E.E.E. Photo, Tech. Lett. 22, 1394 (2010)

    Google Scholar 

  45. P. Yan, G.T. Fei, G.L. Shang, B. Wu, L.D. Zhang, J. Mater. Chem. C 1, 1659 (2013)

    Google Scholar 

  46. Y. Su, G.T. Fei, Y. Zhang, P. Yan, H. Li, G.L. Shang, L.D. Zhang, Mater. Lett. 65, 2693 (2011)

    Google Scholar 

  47. X.L.Q. Wang, D.X. Zhang, H.J. Zhang, Y. Ma, J.Z. Jiang, Nanotechnology 22, 849–854 (2011)

    Google Scholar 

  48. I. Maksymov, J. Ferre-Borrull, J. Pallares, L.F. Marsal, Photon. Nanostruc. Fund. Applic. 10, 459 (2012)

    Google Scholar 

  49. A. Sato, Y. Pennec, T. Yanagishita, H. Masuda, W. Knoll, B. Djafari-Rouhani, G. Fytas, New J. Phys. 14 (2012)

    Google Scholar 

  50. X.D. Li, G.W. Meng, S.Y. Qin, Q.L. Xu, Z.Q. Chu, X.G. Zhu, M.G. Kong, A.P. Li, ACS Nano 6, 831 (2012)

    Google Scholar 

  51. F.M. Han, G.W. Meng, Q.L. Xu, X.G. Zhu, X.L. Zhao, B.S. Chen, X.D. Li, D.C. Yang, Z.Q. Chu, M.G. Kong, Angew. Chem. Int. Ed. 50, 2036 (2011)

    Google Scholar 

  52. G.D. Sulka, A. Brzozka, L.F. Liu, Electrochim. Acta 56, 4972 (2011)

    Google Scholar 

  53. I.E. Rauda, R. Senter, S.H. Tolbert, J. Mater. Chem. C 1, 1423 (2013)

    Google Scholar 

  54. B. Benfedda, L. Hamadou, N. Benbrahim, A. Kadri, E. Chainet, F. Charlot, J. Electrochem. Soc. 159, C372 (2012)

    Google Scholar 

  55. M.K. Date, B.C. Chiu, C.H. Liu, Y.Z. Chen, Y.C. Wang, H.Y. Tuan, Y.L. Chueh, Mater. Chem. Phys. 138, 5 (2013)

    Google Scholar 

  56. W. Liu, X.D. Wang, R. Xu, X.F. Wang, K.F. Cheng, H.L. Ma, F.H. Yang, J.M. Li, Mater. Sci. Semicond. Proc. 16, 160 (2013)

    Google Scholar 

  57. Y. Xiang, A. Keilbach, L.M. Codinachs, K. Nielsch, G. Abstreiter, A.F.I. Morral, T. Bein, Nano Lett. 10, 1341 (2010)

    Google Scholar 

  58. S.L. Brock, I.U. Arachchige, J.L. Mohanan, Science 307, 397 (2005)

    Google Scholar 

  59. M. Tian, W. Wang, Y.J. Wei, R.G. Yang, J. Power Sour. 211, 46 (2012)

    Google Scholar 

  60. M. Tian, W. Wang, S.H. Lee, Y.C. Lee, R.G. Yang, J. Power Sour. 196, 10207 (2011)

    Google Scholar 

  61. G. Ferrara, L. Damen, C. Arbizzani, R. Inguanta, S. Piazza, C. Sunseri, M. Mastragostino, J. Power Sour. 196, 1469 (2011)

    Google Scholar 

  62. W. Wang, M. Tian, A. Abdulagatov, S.M. George, Y.C. Lee, R.G. Yang, Nano Lett. 12, 655 (2012)

    Google Scholar 

  63. Y.C. Tsao, T. Sondergaard, E. Skovsen, L. Gurevich, K. Pedersen, T.G. Pedersen, Opt. Exp. 21, A84 (2013)

    Google Scholar 

  64. D. Chen, W. Zhao, T.P. Russell, ACS Nano 6, 1479 (2012)

    Google Scholar 

  65. L.C. Haspert, S.B. Lee, G.W. Rubloff, ACS Nano 6, 3528 (2012)

    Google Scholar 

  66. T. Xue, X. Wang, J.M. Lee, J. Power Sour. 201, 382 (2012)

    Google Scholar 

  67. L.J. Li, B. Zhu, S.J. Ding, H.L. Lu, Q.Q. Sun, A.Q. Jiang, D.W. Zhang, C.X. Zhu, Nanoscale Res. Lett. 7 (2012)

    Google Scholar 

  68. W. Lee, H. Han, A. Lotnyk, M.A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, U. Gösele, Nat. Nanotechnol. 3, 402 (2008)

    Google Scholar 

  69. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Adv. Mater. 24, 5166 (2012)

    Google Scholar 

  70. K. Hotta, A. Yamaguchi, N. Teramae, ACS Nano 6, 1541 (2012)

    Google Scholar 

  71. K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore, D. Losic, Biomaterials 31, 532 (2010)

    Google Scholar 

  72. J.B. Li, Y. Yu, X.N. Peng, Z.J. Yang, Z.K. Zhou, L. Zhou, J. Appl. Phys. 111, 123110 (2012)

    Google Scholar 

  73. K. Hotta, A. Yamaguchi, N. Teramae, J. Phys. Chem. C 116, 23533 (2012)

    Google Scholar 

  74. A. Santos, M. Alba, M.M. Rahman, P. Formentin, J. Ferre-Borrull, J. Pallares, L.F. Marsal, Nanoscale Res. Lett. 7, 228 (2012)

    Google Scholar 

  75. S.H. Yeom, O.G. Kim, B.H. Kang, K.J. Kim, H. Yuan, D.H. Kwon, H.R. Kim, S.W. Kang, Opt. Exp. 19, 22882 (2011)

    Google Scholar 

  76. C. Nicolini, T. Bezerra, E. Pechkova, Nanomedicine 7, 1117 (2012)

    Google Scholar 

  77. J.T. Chen, W.L. Chen, P.W. Fan, ACS Macro Lett. 1, 41 (2012)

    Google Scholar 

  78. A.Y.Y. Ho, L.P. Yeo, Y.C. Lam, I. Rodriguez, ACS Nano 5, 1897 (2011)

    Google Scholar 

  79. Y. Wang, L. Tong, M. Steinhart, ACS Nano 5, 1928 (2011)

    Google Scholar 

  80. T. Yanagishita, R. Fujimura, K. Nishio, H. Masuda, Chem. Lett. 39, 188 (2010)

    Google Scholar 

  81. N. Suzuki, M. Imura, Y. Nemoto, X.F. Jiang, Y. Yamauchi, Cryst. Eng. Comm. 13, 40 (2011)

    Google Scholar 

  82. J.T. Chen, C.W. Lee, M.H. Chi, I.C. Yao, Macromol. Rap. Comm. 34, 348 (2013)

    Google Scholar 

  83. K. Kwon, C.W. Park, D. Kim, Sensor. Actuat. A-Phys. 175, 108 (2012)

    Google Scholar 

  84. Y.H. Ma, G.Q. Zhan, M. Ma, X. Wang, C.Y. Li, Bioelectrochemistry 84, 6 (2012)

    Google Scholar 

  85. J.R. Deneault, X.Y. Xiao, T.S. Kang, J.S. Wang, C.M. Wai, G.J. Brown, M.F. Durstock, ChemPhysChem 13, 256 (2012)

    Google Scholar 

  86. R.M. Michell, A.T. Lorenzo, A.J. Muller, M.C. Lin, H.L. Chen, I. Blaszczyk-Lezak, J. Martin, C. Mijangos, Macromolecules 45, 1517 (2012)

    Google Scholar 

  87. Y. Suzuki, H. Duran, M. Steinhart, H.J. Butt, G. Floudas, Soft Matter 9, 2621 (2013)

    Google Scholar 

  88. H. Wu, Z.H. Su, A. Takahara, Soft Matter 7, 1868 (2011)

    Google Scholar 

  89. K. Shwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gösele, ACS Nano 2, 302 (2008)

    Google Scholar 

  90. C. Cheng, A.H.W. Ngan, Nanotechnology 24, 215602 (2013)

    Google Scholar 

  91. C.K.Y. Ng, A.H.W. Ngan, Chem. Mater. 23, 5264 (2011)

    Google Scholar 

  92. W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 5, 741 (2006)

    Google Scholar 

  93. H. Masuda, K. Fukuda, Science 268, 1466 (1995)

    Google Scholar 

  94. J.P. O’Sullivan, G.C. Wood, Proc. R. Soc. London, Ser. A 317, 511 (1970)

    Google Scholar 

  95. G.E. Thompson, G.C. Wood, Nature 290, 230 (1981)

    Google Scholar 

  96. E. Moyen, L. Santinacci, L. Masson, W. Wulfhekel, M. Hanbucken, Adv. Mater. 24, 5094 (2012)

    Google Scholar 

  97. F. Keller, M.S. Hunter, D.L. Robinson, J. Electrochem. Soc. 100, 441 (1953)

    Google Scholar 

  98. N.Q. Zhao, X.X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, J. Mater. Sci. 42, 3878 (2007)

    Google Scholar 

  99. A.L. Friedman, D. Brittain, L. Menon, J. Chem. Phys. 127, 154717 (2007)

    Google Scholar 

  100. C. Cheng, K.Y. Ng, A.H.W. Ngan, AIP Adv. 1, 042113 (2011)

    Google Scholar 

  101. A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gosele, J. Vac. Sci. Technol., A 17, 1428 (1999)

    Google Scholar 

  102. C. Cheng, K.Y. Ng, N.R. Aluru, A.H.W. Ngan, J. Appl. Phys. 113, 204903 (2013)

    Google Scholar 

  103. A.L. Friedman, L. Menon, J. Appl. Phys. 101, 084310 (2007)

    Google Scholar 

  104. H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, L127 (1997)

    Google Scholar 

  105. H. Masuda, K. Yada, A. Osada, Jpn. J. Appl. Phys. 37, L1340 (1998)

    Google Scholar 

  106. C. Cheng, A.H.W. Ngan, Electrochim. Acta 56, 9998 (2011)

    Google Scholar 

  107. S. Anderson, J. Appl. Phys. 15, 477 (1944)

    Google Scholar 

  108. T.P. Hoar, N.F. Mott, J. Phys. Chem. Solids 9, 97 (1959)

    Google Scholar 

  109. T.P. Hoar, in Modern Aspects of Electrochemistry, ed. by J.O.M. Bockris (Butterworths Scientific Publications, London, 1959), p. 263

    Google Scholar 

  110. J.W. Diggle, in Oxide and Oxide Films, vol. 2, ed. by J.W. Diggle (Marcel Dekker, New York, 1973), p. 281

    Google Scholar 

  111. G.E. Thompson, R.C. Furneaux, G.C. Wood, J.A. Richardson, J.S. Goode, Nature 271, 433 (1978)

    Google Scholar 

  112. G.E. Thompson, Thin Solid Films 297, 192 (1997)

    Google Scholar 

  113. V.P. Parkhutik, V.I. Shershulsky, J. Phys. D Appl. Phys. 25, 1258 (1992)

    Google Scholar 

  114. S.K. Thamida, H.C. Chang, Chaos 12, 240 (2002)

    Google Scholar 

  115. G.K. Singh, A.A. Golovin, I.S. Aranson, V.M. Vinokur, Europhys. Lett. 70, 836 (2005)

    Google Scholar 

  116. G.K. Singh, A.A. Golovin, I.S. Aranson, Phys. Rev. B 73, 205422 (2006)

    Google Scholar 

  117. C. Sample, A.A. Golovin, Phys. Rev. B 74, 041606 (2006)

    Google Scholar 

  118. G. Patermarakis, J. Chandrinos, K. Masavetas, J. Solid State Electrochem. 11, 1191 (2007)

    Google Scholar 

  119. G. Patermarakis, K. Moussoutzanis, Electrochim. Acta 54, 2434 (2009)

    Google Scholar 

  120. O. Jessensky, F. Müller, U. Gosele, Appl. Phys. Lett. 72, 1173 (1998)

    Google Scholar 

  121. A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, J. Appl. Phys. 84, 6023 (1998)

    Google Scholar 

  122. J.E. Houser, K.R. Hebert, J. Electrochem. Soc. 153, B566 (2006)

    Google Scholar 

  123. J.E. Houser, K.R. Hebert, Phys. Stat. Sol. (a) 205, 2396 (2008)

    Google Scholar 

  124. K.R. Hebert, J.E. Houser, J. Electrochem. Soc. 156, C275 (2009)

    Google Scholar 

  125. K.R. Hebert, S.P. Albu, I. Paramasivam, P. Schmuki, Nat. Mater. 11, 162 (2012)

    Google Scholar 

  126. J.E. Houser, K.R. Hebert, Nat. Mater. 8, 415 (2009)

    Google Scholar 

  127. Q. Van Overmeere, F. Blaffart, J. Proost, Electrochem. Commun. 12, 1174 (2010)

    Google Scholar 

  128. N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 163 (1949)

    Google Scholar 

  129. M. Nagayama, K. Tamura, Electrochim. Acta 12, 1097 (1967)

    Google Scholar 

  130. M. Nagayama, K. Tamura, Electrochim. Acta 13, 1773 (1968)

    Google Scholar 

  131. R.B. Mason, J. Electrochem. Soc. 102, 671 (1955)

    Google Scholar 

  132. F. Li, Ph.D. Thesis, University of Alabama (1998)

    Google Scholar 

  133. F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)

    Google Scholar 

  134. M.S. Hunter, P. Fowle, J. Electrochem. Soc. 101, 514 (1954)

    Google Scholar 

  135. J. Oh, Ph.D. Thesis, Massachusetts Institute of Technology (2010)

    Google Scholar 

  136. C. Cheng, A.H.W. Ngan, J. Phys. Chem. C 117, 12183 (2013)

    Google Scholar 

  137. N.B. Pilling, R.E. Bedworth, J. Inst. Metals 29, 529 (1923)

    Google Scholar 

  138. R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials (Elsevier, Amsterdam, 2007)

    Google Scholar 

  139. C. Cherki, J. Siejka, J. Electrochem. Soc. 120, 784 (1973)

    Google Scholar 

  140. S.J. Garcia-Vergara, L. Iglesias-Rubianes, C.E. Blanco-Pinzon, P. Skeldon, G.E. Thompson, P. Campestrini, Proc. R. Soc. A 462, 2345 (2006)

    Google Scholar 

  141. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Electrochim. Acta 52, 681 (2006)

    Google Scholar 

  142. P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes, G.E. Blanco-Pinzon, Electrochem. Solid State Lett. 9, B47 (2006)

    Google Scholar 

  143. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Corro. Sci. 49, 3772 (2007)

    Google Scholar 

  144. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Surf. Inerface Anal. 39, 860 (2007)

    Google Scholar 

  145. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Thin Solid Films 515, 5418 (2007)

    Google Scholar 

  146. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, T. Hashimoto, H. Habazaki, J. Electrochem. Soc. 154, C540 (2007)

    Google Scholar 

  147. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Corro. Sci. 50, 3179 (2008)

    Google Scholar 

  148. S.J. Garcia-Vergara, T. Hashimoto, P. Skeldon, G.E. Thompson, H. Habazaki, Electrochim. Acta 54, 3662 (2009)

    Google Scholar 

  149. O. Jessensky, F. Müller, U. Gösele, J. Electrochem. Soc. 145, 3735 (1998)

    Google Scholar 

  150. J.F. Dewald, Acta. Met. 2, 340 (1954)

    Google Scholar 

  151. J.F. Dewald, J. Electrochem. Soc. 102, 1 (1955)

    Google Scholar 

  152. D.A. Vermilyea, Acta. Met. 1, 282 (1953)

    Google Scholar 

  153. G. Patermarakis, J. Electroanal. Chem. 635, 39 (2009)

    Google Scholar 

  154. S. Ono, M. Saito, M. Ishiguro, H. Asoh, J. Electrochem. Soc. 151, B473 (2004)

    Google Scholar 

  155. J.A. Davies, B. Domeij, J.P.S. Pringle, F. Brown, J. Electrochem. Soc. 112, 675 (1965)

    Google Scholar 

  156. J.A. Davies, B. Domeij, J. Electrochem. Soc. 110, 849 (1963)

    Google Scholar 

  157. K. Nielsch, J. Choi, K. Schwim, R.B. Wehrspohn, U. Gösele, Nano Lett. 2, 677 (2002)

    Google Scholar 

  158. J.D. Edwards, F. Keller, Trans. Electrochem. Soc. 79, 180 (1940)

    Google Scholar 

  159. R.C. Spooner, J. Electrochem. Soc. 102, 156 (1955)

    Google Scholar 

  160. Z. Wu, C. Richter, L. Menon, J. Electrochem. Soc. 154, E8 (2007)

    Google Scholar 

  161. J.L. Whitton, J. Electrochem. Soc. 115, 58 (1968)

    Google Scholar 

  162. J. Siejka, C. Ortega, J. Electrochem. Soc. 124, 883 (1977)

    Google Scholar 

  163. L. Young, Anodic Oxide Films (Academic Press, London, 1961)

    Google Scholar 

  164. D.A. Vermilyea, J. Electrochem. Soc. 113, 1067 (1966)

    Google Scholar 

  165. G.A.J. Dorsey, J. Electrochem. Soc. 113, 169 (1966)

    Google Scholar 

  166. L. Vecchia, G. Piazzesi, F. Siniscalco, Electrochim. Metal 2, 71 (1967)

    Google Scholar 

  167. J. Siejka, J.P. Nadai, G. Amsel, J. Electrochem. Soc. 118, 727 (1970)

    Google Scholar 

  168. S. Lee, H.S. White, J. Electrochem. Soc. 151, B479 (2004)

    Google Scholar 

  169. T. Valand, K.E. Heusler, J. Electroanal. Chem. 149, 71 (1983)

    Google Scholar 

  170. C. Cheng, Ph.D. Thesis, The University of Hong Kong (2013)

    Google Scholar 

  171. C. Cheng, A.H.W. Ngan, J. Appl. Phys. 113, 184903 (2013)

    Google Scholar 

  172. Z. Su, W. Zhou, Adv. Mater. 20, 3663 (2008)

    Google Scholar 

  173. K. Nishio, T. Yanagishita, S. Hatakeyama, H. Maegawa, H. Masuda, J. Vac. Sci. Technol., A B26, L10 (2008)

    Google Scholar 

  174. J.M. Montero-Moreno, M. Sarret, C. Muller, J. Electrochem. Soc. 154, C169 (2007)

    Google Scholar 

Download references

Acknowledgments

The work described here was funded by a grant from the Research Grants Council of the Hong Kong Special Administrative Government, P.R. China (project code: 17206114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. W. Ngan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheng, C., Ngan, A.H.W. (2015). Theoretical Pore Growth Models for Nanoporous Alumina. In: Losic, D., Santos, A. (eds) Nanoporous Alumina. Springer Series in Materials Science, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-20334-8_2

Download citation

Publish with us

Policies and ethics