Skip to main content

Organic Photovoltaics

  • Chapter
  • First Online:
Semiconductor Materials for Solar Photovoltaic Cells

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 218))

Abstract

Organic photovoltaics (OPV) describes a group of technologies wherein the active layer of a solar cell is composed of hydrocarbon-based organic materials. OPV occupies a special niche among solar energy technologies in that it could potentially satisfy the growing energy needs of the world with a product that is sustainable, elementally abundant, and cheaply manufactured. This review describes some materials used for organic photovoltaics, important materials structure measurements related to them, and the outlook for organic photovoltaics in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brabec, C.J.: Organic Photovoltaics: Concepts and Realization. Springer, Berlin (2003)

    Google Scholar 

  2. Brabec, C., Scherf, U., Dyakonov, V.: Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. John Wiley & Sons, Hoboken (2011)

    Google Scholar 

  3. Dennler, G., Scharber, M.C., Brabec, C.J.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)

    Article  Google Scholar 

  4. Kazmerski, L.: Best research-cell efficiencies. at http://www.nrel.gov/ncpv/

  5. You, J., et al.: A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat. Commun. 4, 1446 (2013)

    Google Scholar 

  6. Brabec, C.J., et al.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010)

    Article  Google Scholar 

  7. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  8. Kallmann, H., Pope, M.: Photovoltaic effect in organic crystals. J. Chem. Phys. 30, 585–586 (1959)

    Article  ADS  Google Scholar 

  9. Gomes da Costa, P., Conwell, E.M.: Excitons and the band gap in poly(phenylene vinylene). Phys. Rev. B 48, 1993–1996 (1993)

    Google Scholar 

  10. Brédas, J.-L., Cornil, J., Heeger, A.J.: The exciton binding energy in luminescent conjugated polymers. Adv. Mater. 8, 447–452 (1996)

    Article  Google Scholar 

  11. Barth, S., Bässler, H.: Intrinsic photoconduction in PPV-type conjugated polymers. Phys. Rev. Lett. 79, 4445–4448 (1997)

    Article  ADS  Google Scholar 

  12. Alvarado, S.F., Seidler, P.F., Lidzey, D.G., Bradley, D.D.C.: Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope. Phys. Rev. Lett. 81, 1082–1085 (1998)

    Article  ADS  Google Scholar 

  13. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Article  ADS  Google Scholar 

  14. Chamberlain, G.A.: Organic solar cells: a review. Sol. Cells 8, 47–83 (1983)

    Article  ADS  Google Scholar 

  15. Halls, J.J.M., Pichler, K., Friend, R.H., Moratti, S.C., Holmes, A.B.: Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68, 3120–3122 (1996)

    Article  ADS  Google Scholar 

  16. Markov, D.E., Tanase, C., Blom, P.W.M., Wildeman, J.: Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives. Phys. Rev. B 72, 045217 (2005)

    Article  ADS  Google Scholar 

  17. Markov, D.E., Amsterdam, E., Blom, P.W.M., Sieval, A.B., Hummelen, J.C.: Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J. Phys. Chem. A 109, 5266–5274 (2005)

    Article  Google Scholar 

  18. Heeger, A.J.: 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26, 10–28 (2014)

    Article  Google Scholar 

  19. Sariciftci, N.S., Smilowitz, L., Heeger, A.J., Wudl, F.: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992)

    Article  ADS  Google Scholar 

  20. Kraabel, B., et al.: Ultrafast photoinduced electron transfer in conducting polymer–buckminsterfullerene composites. Chem. Phys. Lett. 213, 389–394 (1993)

    Article  ADS  Google Scholar 

  21. Brabec, C.J., et al.: Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 340, 232–236 (2001)

    Article  ADS  Google Scholar 

  22. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)

    Article  ADS  Google Scholar 

  23. Shaheen, S.E., et al.: 2.5 % efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001)

    Article  ADS  Google Scholar 

  24. DeLongchamp, D.M., Kline, R.J., Herzing, A.: Nanoscale structure measurements for polymer-fullerene photovoltaics. Energy Environ. Sci. 5, 5980–5993 (2012)

    Article  Google Scholar 

  25. Vandewal, K., Himmelberger, S., Salleo, A.: Structural factors that affect the performance of organic bulk heterojunction solar cells. Macromolecules 130807112515002 (2013). doi:10.1021/ma400924b

    Google Scholar 

  26. Vakhshouri, K., Kesava, S.V., Kozub, D.R., Gomez, E.D.: Characterization of the mesoscopic structure in the photoactive layer of organic solar cells: a focused review. Mater. Lett. 90, 97–102 (2013)

    Article  Google Scholar 

  27. Scharber, M.C., et al.: Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)

    Article  Google Scholar 

  28. Beaujuge, P.M., Fréchet, J.M.J.: Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133, 20009–20029 (2011)

    Article  Google Scholar 

  29. Dang, M.T., Hirsch, L., Wantz, G.: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597–3602 (2011)

    Article  Google Scholar 

  30. Marrocchi, A., Lanari, D., Facchetti, A., Vaccaro, L.: Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ. Sci. 5, 8457–8474 (2012)

    Article  Google Scholar 

  31. Hotta, S., Rughooputh, S.D.D.V., Heeger, A.J., Wudl, F.: Spectroscopic studies of soluble poly(3-alkylthienylenes). Macromolecules 20, 212–215 (1987)

    Article  ADS  Google Scholar 

  32. McCullough, R.D., Lowe, R.D.: Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc. Chem. Commun. 70–72 (1992). doi:10.1039/C39920000070

  33. Chen, T.-A., Wu, X., Rieke, R.D.: Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke Zinc: their characterization and solid-state properties. J. Am. Chem. Soc. 117, 233–244 (1995)

    Article  Google Scholar 

  34. Loewe, R.S., Khersonsky, S.M., McCullough, R.D.: A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophenes) using grignard metathesis. Adv. Mater. 11, 250–253 (1999)

    Article  Google Scholar 

  35. Prosa, T.J., Winokur, M.J., Moulton, J., Smith, P., Heeger, A.J.: X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb. Macromolecules 25, 4364–4372 (1992)

    Article  ADS  Google Scholar 

  36. Joseph Kline, R., McGehee, M.D., Toney, M.F.: Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222–228 (2006)

    Google Scholar 

  37. Zhan, X., Zhu, D.: Conjugated polymers for high-efficiency organic photovoltaics. Polym. Chem. 1, 409 (2010)

    Article  Google Scholar 

  38. Inganäs, O., et al.: Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures. Adv. Mater. 22, E100–E116 (2010)

    Article  Google Scholar 

  39. Blouin, N., Michaud, A., Leclerc, M.: A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 19, 2295–2300 (2007)

    Article  Google Scholar 

  40. Beaupré, S., Leclerc, M.: PCDTBT: en route for low cost plastic solar cells. J. Mater. Chem. A 1, 11097–11105 (2013)

    Article  Google Scholar 

  41. Wang, D.H., et al.: Transferable graphene oxide by stamping nanotechnology: electron-transport layer for efficient bulk-heterojunction solar cells. Angew. Chem. Int. Ed. 52, 2874–2880 (2013)

    Article  Google Scholar 

  42. Peters, C.H., et al.: High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491–494 (2011)

    Article  Google Scholar 

  43. Peet, J., et al.: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007)

    Article  ADS  Google Scholar 

  44. Lee, J.K., et al.: Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130, 3619–3623 (2008)

    Article  Google Scholar 

  45. Morana, M., et al.: Nanomorphology and charge generation in bulk heterojunctions based on low-bandgap dithiophene polymers with different bridging atoms. Adv. Funct. Mater. 20, 1180–1188 (2010)

    Article  Google Scholar 

  46. Shin, N. et al.: Effect of processing additives during solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements. Adv. Funct. Mater. (2013)

    Google Scholar 

  47. Liang, Y., et al.: For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv. Mater. 22, E135–E138 (2010)

    Article  Google Scholar 

  48. He, Z., et al.: Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591–595 (2012)

    ADS  Google Scholar 

  49. Carsten, B., et al.: Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications. J. Am. Chem. Soc. 133, 20468–20475 (2011)

    Article  Google Scholar 

  50. Price, S.C., Stuart, A.C., Yang, L., Zhou, H., You, W.: Fluorine substituted conjugated polymer of medium band gap yields 7 % efficiency in polymer−fullerene solar cells. J. Am. Chem. Soc. 133, 4625–4631 (2011)

    Article  Google Scholar 

  51. Albrecht, S., et al.: Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells. J. Am. Chem. Soc. 134, 14932–14944 (2012)

    Article  Google Scholar 

  52. Stuart, A.C., et al.: Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 135, 1806–1815 (2013)

    Article  Google Scholar 

  53. Van der Poll, T.S., Love, J.A., Nguyen, T.-Q., Bazan, G.C.: Non-basic high-performance molecules for solution-processed organic solar cells. Adv. Mater. 24, 3646–3649 (2012)

    Article  Google Scholar 

  54. Chen, W., et al.: Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett. 11, 3707–3713 (2011)

    Article  ADS  Google Scholar 

  55. Liu, F. et al.: Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 4, n/a–n/a (2014)

    Google Scholar 

  56. Hammond, M.R., et al.: Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. ACS Nano 5, 8248–8257 (2011)

    Article  MathSciNet  Google Scholar 

  57. Hedley, G.J. et al.: Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nat. Commun. 4 (2013)

    Google Scholar 

  58. Guo, S., et al.: Influence of Solvent and Solvent Additive on the Morphology of PTB7 Films Probed via X-ray Scattering. J. Phys. Chem. B 118, 344–350 (2014)

    Article  Google Scholar 

  59. Piliego, C., et al.: Synthetic control of structural order in n-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 7595–7597 (2010)

    Article  Google Scholar 

  60. Cabanetos, C., et al.: Linear side chains in benzo[1,2-b:4,5-b′]dithiophene–thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. J. Am. Chem. Soc. 135, 4656–4659 (2013)

    Article  Google Scholar 

  61. Lin, Y., Li, Y., Zhan, X.: Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 41, 4245 (2012)

    Article  Google Scholar 

  62. Kyaw, A.K.K., et al.: Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano 7, 4569–4577 (2013)

    Article  Google Scholar 

  63. Bronstein, H., et al.: Thieno[3,2-b]thiophene−diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133, 3272–3275 (2011)

    Article  Google Scholar 

  64. Walker, B., et al.: Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv. Funct. Mater. 19, 3063–3069 (2009)

    Article  Google Scholar 

  65. Tumbleston, J.R., Stuart, A.C., Gann, E., You, W., Ade, H.: Fluorinated polymer yields high organic solar cell performance for a wide range of morphologies. Adv. Funct. Mater. 23, 3463–3470 (2013)

    Article  Google Scholar 

  66. Mei, J., Graham, K.R., Stalder, R., Reynolds, J.R.: Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells. Org. Lett. 12, 660–663 (2010)

    Article  Google Scholar 

  67. Wang, E., et al.: An easily accessible isoindigo-based polymer for high-performance polymer solar cells. J. Am. Chem. Soc. 133, 14244–14247 (2011)

    Article  Google Scholar 

  68. Stalder, R., Grand, C., Subbiah, J., So, F., Reynolds, J.R.: An isoindigo and dithieno[3,2-b:2′,3′-d]silole copolymer for polymer solar cells. Polym. Chem. 3, 89 (2012)

    Article  Google Scholar 

  69. Hummelen, J.C., et al.: Preparation and characterization of fulleroid and methanofullerene derivatives. J. Org. Chem. 60, 532–538 (1995)

    Article  Google Scholar 

  70. Wudl, F.: Fullerene materials. J. Mater. Chem. 12, 1959–1963 (2002)

    Article  Google Scholar 

  71. Giacalone, F., Martín, N.: New concepts and applications in the macromolecular chemistry of fullerenes. Adv. Mater. 22, 4220–4248 (2010)

    Article  Google Scholar 

  72. He, Y., Li, Y.: Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 13, 1970 (2011)

    Article  Google Scholar 

  73. Wienk, M.M., et al.: Efficient methano[70]fullerene/mdmo-ppv bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42, 3371–3375 (2003)

    Article  Google Scholar 

  74. He, C., et al.: Influence of substrate on crystallization in polythiophene/fullerene blends. Sol. Energy Mater. Sol. Cells 95, 1375–1381 (2011)

    Article  Google Scholar 

  75. Rispens, M.T., et al.: Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM ‘plastic’ solar cells. Chem. Commun. 2116–2118 (2003). doi:10.1039/B305988J

  76. Collins, B.A., Tumbleston, J.R., Ade, H.: Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: toward an enlightened understanding of device morphology and stability. J. Phys. Chem. Lett. 2, 3135–3145 (2011)

    Article  Google Scholar 

  77. Jamieson, F.C., et al.: Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3, 485 (2012)

    Article  Google Scholar 

  78. Lenes, M., et al.: Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv. Mater. 20, 2116–2119 (2008)

    Article  ADS  Google Scholar 

  79. Faist, M.A., et al.: Effect of multiple adduct fullerenes on charge generation and transport in photovoltaic blends with poly(3-hexylthiophene-2,5-diyl). J. Polym. Sci. Part B Polym. Phys. 49, 45–51 (2011)

    Google Scholar 

  80. Laird, D.W., et al. Organic photovoltaic devices comprising fullerenes and derivatives thereof (2010)

    Google Scholar 

  81. Zhao, G., He, Y., Li, Y.: 6.5 % efficiency of polymer solar cells based on poly(3-hexylthiophene) and Indene-C60 bisadduct by device optimization. Adv. Mater. 22, 4355–4358 (2010)

    Article  Google Scholar 

  82. Anthony, J.E., Facchetti, A., Heeney, M., Marder, S.R., Zhan, X.: n-type organic semiconductors in organic electronics. Adv. Mater. 22, 3876–3892 (2010)

    Article  Google Scholar 

  83. Halls, J.J.M., et al.: Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995)

    Article  ADS  Google Scholar 

  84. Yu, G., Heeger, A.J.: Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995)

    Article  ADS  Google Scholar 

  85. Granström, M., et al.: Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257–260 (1998)

    Article  ADS  Google Scholar 

  86. Zhan, X., et al.: A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 129, 7246–7247 (2007)

    Article  Google Scholar 

  87. Mikroyannidis, J.A., Stylianakis, M.M., Sharma, G.D., Balraju, P., Roy, M.S.: A novel alternating phenylenevinylene copolymer with perylene bisimide units: synthesis, photophysical, electrochemical, and photovoltaic properties. J. Phys. Chem. C 113, 7904–7912 (2009)

    Article  Google Scholar 

  88. Zhou, E., et al.: All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew. Chem. Int. Ed. 50, 2799–2803 (2011)

    Article  Google Scholar 

  89. Yan, H., et al.: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009)

    Article  ADS  Google Scholar 

  90. Rivnay, J., et al.: Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer. Adv. Mater. 22, 4359–4363 (2010)

    Article  Google Scholar 

  91. Rivnay, J., et al.: Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44, 5246–5255 (2011)

    Article  Google Scholar 

  92. Fabiano, S., et al.: Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells. J. Mater. Chem. 21, 5891 (2011)

    Article  Google Scholar 

  93. Moore, J.R., et al.: Polymer blend solar cells based on a high-mobility naphthalenediimide-based polymer acceptor: device physics, photophysics and morphology. Adv. Energy Mater. 1, 230–240 (2011)

    Article  Google Scholar 

  94. Schubert, M., et al.: Influence of aggregation on the performance of all-polymer solar cells containing low-bandgap naphthalenediimide copolymers. Adv. Energy Mater. 2, 369–380 (2012)

    Article  Google Scholar 

  95. Facchetti, A.: Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 16, 123–132 (2013)

    Article  Google Scholar 

  96. Ali-Oettinger, S.: Heliatek announces world record for organic cell. Pv Mag. at http://www.pv-magazine.com/news/details/beitrag/heliatek-announces-world-record-for-organic-cell_100009859/

  97. Xue, J., Uchida, S., Rand, B.P., Forrest, S.R.: 4.2 % efficient organic photovoltaic cells with low series resistances. Appl. Phys. Lett. 84, 3013–3015 (2004)

    Article  ADS  Google Scholar 

  98. Xue, J., Uchida, S., Rand, B.P., Forrest, S.R.: Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 85, 5757–5759 (2004)

    Article  ADS  Google Scholar 

  99. Schueppel, R., et al.: Optimizing organic photovoltaics using tailored heterojunctions: a photoinduced absorption study of oligothiophenes with low band gaps. Phys. Rev. B 77, 085311 (2008)

    Article  ADS  Google Scholar 

  100. Fitzner, R., et al.: Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv. Funct. Mater. 21, 897–910 (2011)

    Article  Google Scholar 

  101. Lin, L.-Y., et al.: A low-energy-gap organic dye for high-performance small-molecule organic solar cells. J. Am. Chem. Soc. 133, 15822–15825 (2011)

    Article  Google Scholar 

  102. Chiu, S.-W., et al.: A donor–acceptor–acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4 %. Chem. Commun. 48, 1857 (2012)

    Article  Google Scholar 

  103. Kronenberg, N.M., et al.: Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes. Adv. Mater. 22, 4193–4197 (2010)

    Article  Google Scholar 

  104. Rivnay, J., Mannsfeld, S.C.B., Miller, C.E., Salleo, A., Toney, M.F.: Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488–5519 (2012)

    Article  Google Scholar 

  105. Vandewal, K., Himmelberger, S., Salleo, A.: Structural factors that affect the performance of organic bulk heterojunction solar cells. Macromolecules (2013). doi:10.1021/ma400924b

    Google Scholar 

  106. Dang, M.T., Hirsch, L., Wantz, G., Wuest, J.D.: Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-c61-butyric acid methyl ester system. Chem. Rev. 113, 3734–3765 (2013)

    Article  Google Scholar 

  107. Spano, F.C.: The spectral signatures of frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010)

    Article  Google Scholar 

  108. Clark, J., Silva, C., Friend, R.H., Spano, F.C.: Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98, 206406 (2007)

    Article  ADS  Google Scholar 

  109. Spano, F.C.: Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J. Chem. Phys. 122, 234701–234701–15 (2005)

    Google Scholar 

  110. Clark, J., Chang, J.-F., Spano, F. C., Friend, R.H., Silva, C.: Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 94, 163306–163306–3 (2009)

    Google Scholar 

  111. Turner, S.T., et al.: Quantitative analysis of bulk heterojunction films using linear absorption spectroscopy and solar cell performance. Adv. Funct. Mater. 21, 4640–4652 (2011)

    Article  Google Scholar 

  112. Germack, D.S., et al.: Interfacial segregation in polymer/fullerene blend films for photovoltaic devices. Macromolecules 43, 3828–3836 (2010)

    Article  ADS  Google Scholar 

  113. Rivnay, J., Noriega, R., Kline, R.J., Salleo, A., Toney, M.F.: Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 84, 045203 (2011)

    Article  ADS  Google Scholar 

  114. Rivnay, J., et al.: Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011)

    Article  ADS  Google Scholar 

  115. Van Bavel, S.S., Sourty, E., de With, G., Loos, J.: Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. Nano Lett. 9, 507–513 (2009)

    Article  ADS  Google Scholar 

  116. Van Bavel, S.S., Sourty, E., de With, G., Veenstra, S., Loos, J.: Three-dimensional nanoscale organization of polymer solar cells. J. Mater. Chem. 19, 5388–5393 (2009)

    Article  Google Scholar 

  117. Van Bavel, S.S., Bärenklau, M., de With, G., Hoppe, H., Loos, J.: P3HT/PCBM bulk heterojunction solar cells: impact of blend composition and 3D morphology on device performance. Adv. Funct. Mater. 20, 1458–1463 (2010)

    Article  Google Scholar 

  118. Herzing, A.A., Richter, L.J., Anderson, I.M.: 3D nanoscale characterization of thin-film organic photovoltaic device structures via spectroscopic contrast in the TEM 1. J. Phys. Chem. C 114, 17501–17508 (2010)

    Article  Google Scholar 

  119. Pfannmöller, M., et al.: Visualizing a homogeneous blend in bulk heterojunction polymer solar cells by analytical electron microscopy. Nano Lett. 11, 3099–3107 (2011)

    Article  Google Scholar 

  120. Drummy, L.F., et al.: Molecular-scale and nanoscale morphology of P3HT:PCBM bulk heterojunctions: energy-filtered TEM and low-dose HREM†. Chem. Mater. 23, 907–912 (2011)

    Article  Google Scholar 

  121. Kozub, D.R., et al.: Polymer crystallization of partially miscible polythiophene/fullerene mixtures controls morphology. Macromolecules 44, 5722–5726 (2011)

    Article  Google Scholar 

  122. Wodo, O., Tirthapura, S., Chaudhary, S., Ganapathysubramanian, B.: A graph-based formulation for computational characterization of bulk heterojunction morphology. Org. Electron. 13, 1105–1113 (2012)

    Article  Google Scholar 

  123. Wodo, O., Roehling, J.D., Moule, A., Ganapathysubramanian, B.: Quantifying organic solar cell morphology: a computational study of three-dimensional maps. Energy Environ. Sci. (2013). doi:10.1039/C3EE41224E

    Google Scholar 

  124. Watkins, P.K., Walker, A.B., Verschoor, G.L.B.: Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. Nano Lett. 5, 1814–1818 (2005)

    Article  ADS  Google Scholar 

  125. McNeill, C.R., Westenhoff, S., Groves, C., Friend, R.H., Greenham, N.C.: Influence of nanoscale phase separation on the charge generation dynamics and photovoltaic performance of conjugated polymer blends: balancing charge generation and separation. J. Phys. Chem. C 111, 19153–19160 (2007)

    Article  Google Scholar 

  126. Buxton, G.A., Clarke, N.: Predicting structure and property relations in polymeric photovoltaic devices. Phys. Rev. B 74, 085207 (2006)

    Article  ADS  Google Scholar 

  127. Kodali, H.K., Ganapathysubramanian, B.: Computer simulation of heterogeneous polymer photovoltaic devices. Model. Simul. Mater. Sci. Eng. 20, 035015 (2012)

    Article  ADS  Google Scholar 

  128. Ray, B., Lundstrom, M.S., Alam, M.A.: Can morphology tailoring improve the open circuit voltage of organic solar cells? APL Org. Electron. Photonics 5, 7 (2012)

    Google Scholar 

  129. Ray, B., Alam, M.A.: Random vs regularized OPV: Limits of performance gain of organic bulk heterojunction solar cells by morphology engineering. Sol. Energy Mater. Sol. Cells 99, 204–212 (2012)

    Article  Google Scholar 

  130. Chen, D., Liu, F., Wang, C., Nakahara, A., Russell, T.P.: Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. Nano Lett. 11, 2071–2078 (2011)

    Article  ADS  Google Scholar 

  131. Swaraj, S., et al.: Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering. Nano Lett. 10, 2863–2869 (2010)

    Article  ADS  Google Scholar 

  132. Collins, B.A., Tumbleston, J.R., Ade, H.: Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: toward an enlightened understanding of device morphology and stability. J. Phys. Chem. Lett. 2, 3135–3145 (2011)

    Article  Google Scholar 

  133. Collins, B.A., et al.: Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71BM solar cells. Adv. Energy Mater. 3, 65–74 (2013)

    Article  Google Scholar 

  134. Yin, W., Dadmun, M.: A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. ACS Nano 5, 4756–4768 (2011)

    Article  Google Scholar 

  135. Kiel, J.W., Eberle, A.P.R., Mackay, M.E.: Nanoparticle agglomeration in polymer-based solar cells. Phys. Rev. Lett. 105, 168701 (2010)

    Article  ADS  Google Scholar 

  136. Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T.T., Krebs, F.C.: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36–49 (2012)

    Article  Google Scholar 

  137. Darling, S.B., You, F.: The case for organic photovoltaics. RSC Adv. 3, 17633–17648 (2013)

    Article  Google Scholar 

  138. Herndon, A., Pettersson, E.: Thin-film solar panel maker Konarka files for bankruptcy. Bloomberg (2012). at http://www.bloomberg.com/news/2012-06-02/thin-film-solar-panel-maker-konarka-files-for-bankruptcy.html

  139. Tracy W.: Konarka and arch aluminum and glass announce unique solar curtain wall pilot project. Business Wire (2009). http://www.businesswire.com/news/home/20091110005343/en/Konarka-Arch-Aluminum-Glass-Announce-Unique-Solar#.U-JFD_ldV5I

  140. Krebs, F.C., Tromholt, T., Jørgensen, M.: Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2, 873 (2010)

    Article  ADS  Google Scholar 

  141. Krebs, F.C., Fyenbo, J., Jørgensen, M.: Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J. Mater. Chem. 20, 8994 (2010)

    Article  Google Scholar 

  142. Krebs, F.C., et al.: The OE-A OPV demonstrator anno domini 2011. Energy Environ. Sci. 4, 4116 (2011)

    Article  Google Scholar 

  143. Alstrup, J., Jørgensen, M., Medford, A.J., Krebs, F.C.: Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. ACS Appl. Mater. Interfaces 2, 2819–2827 (2010)

    Article  Google Scholar 

  144. Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J.: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013)

    Article  Google Scholar 

  145. Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4 (2013)

    Google Scholar 

  146. Albrecht, S., et al.: On the field dependence of free charge carrier generation and recombination in blends of PCPDTBT/PC70BM: influence of solvent additives. J. Phys. Chem. Lett. 3, 640–645 (2012)

    Article  Google Scholar 

  147. Love, J.A., Proctor, C.M., Liu, J., Takacs, C.J., Sharenko, A., van der Poll, T.S., Heeger, A.J., Bazan, G.C., Nguyen, T.-Q.: Film morphology of high efficiency solution-processed small-molecule solar cells. Adv. Funct. Mater. 23 5019 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean M. DeLongchamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DeLongchamp, D.M. (2016). Organic Photovoltaics. In: Paranthaman, M., Wong-Ng, W., Bhattacharya, R. (eds) Semiconductor Materials for Solar Photovoltaic Cells. Springer Series in Materials Science, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-20331-7_6

Download citation

Publish with us

Policies and ethics