Skip to main content

Discrete Time: Formulation

  • Chapter
Data Assimilation

Part of the book series: Texts in Applied Mathematics ((TAM,volume 62))

  • 5786 Accesses

Abstract

In this chapter, we introduce the mathematical framework for discrete-time data assimilation. Section 2.1 describes the mathematical models we use for the underlying signal , which we wish to recover, and for the data , which we use for the recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here the use of \(v =\{ v(t)\}_{t\geq 0}\) for the solution of this equation should be distinguished from our use of \(v =\{ v_{j}\}_{j=0}^{\infty }\) for the solution of (2.1).

  2. 2.

    Here the index denotes components of the solution, not discrete time.

  3. 3.

    Again, here the index denotes components of the solution, not discrete time.

References

  1. H. Abarbanel. Predicting the Future: Completing Models of Observed Complex Systems. Springer, 2013.

    Google Scholar 

  2. J. Anderson. A method for producing and evaluating probabilistic forecasts from ensemble model integrations. Journal of Climate, 9(7):1518–1530, 1996.

    Article  Google Scholar 

  3. J. Anderson and S. Anderson. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127(12):2741–2758, 1999.

    Article  Google Scholar 

  4. A. Apte, C. K. R. T. Jones, A. M. Stuart, and J. Voss. Data assimilation: mathematical and statistical perspectives. Int. J. Num. Meth. Fluids, 56:1033–1046, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Bengtsson, P. Bickel, and B. Li. Curse of dimensionality revisited: the collapse of importance sampling in very large scale systems. IMS Collections: Probability and Statistics: Essays in Honor of David Freedman, 2:316–334, 2008.

    Article  MathSciNet  Google Scholar 

  6. A. Bennett. Inverse Modeling of the Ocean and Atmosphere. Cambridge, 2002.

    Google Scholar 

  7. J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Verlag, 1985.

    Google Scholar 

  8. J. Bernardo and A. Smith. Bayesian Theory. Wiley, 1994.

    Google Scholar 

  9. A. Beskos, D. Crisan, A. Jasra, et al. On the stability of sequential Monte Carlo methods in high dimensions. The Annals of Applied Probability, 24(4):1396–1445, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Beskos, O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead. Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):333–382, 2006.

    Google Scholar 

  11. P. Bickel, B. Li, and T. Bengtsson. Sharp failure rates for the bootstrap particle filter in high dimensions. IMS Collections: Pushing the Limits of Contemporary Statistics, 3:318–329, 2008.

    MathSciNet  Google Scholar 

  12. M. Branicki and A. Majda. Quantifying Bayesian filter performance for turbulent dynamical systems through information theory. Comm. Math. Sci, 2014.

    Google Scholar 

  13. A. Chorin, M. Morzfeld, and X. Tu. Implicit particle filters for data assimilation. Comm. Appl. Math. Comp. Sc., 5:221–240, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. L. Cotter, M. Dashti, J. C. Robinson, and A. M. Stuart. Bayesian inverse problems for functions and applications to fluid mechanics. Inverse Problems, 25(11):115008, 2009.

    Google Scholar 

  15. S. L. Cotter, M. Dashti, and A. M. Stuart. Approximation of Bayesian inverse problems for PDEs. SIAM J. Num. Anal., 48(1):322–345, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Dashti, S. Harris, and A. M. Stuart. Besov priors for Bayesian inverse problems. Inverse Problems and Imaging, 6:183–200, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Dashti and A. M. Stuart. Uncertainty quantification and weak approximation of an elliptic inverse problem. SIAM J. Num. Anal., 49:2524–2542, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Doucet, A. de Frietas and N. Gordon. Sequential Monte Carlo in Practice. Springer-Verlag, 2001.

    Google Scholar 

  19. G. Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer, 2006.

    Google Scholar 

  20. K. J. Falconer. The Geometry of Fractal Sets, volume 85. Cambridge University Press, 1986.

    Google Scholar 

  21. S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. Consistency issues in Bayesian nonparametrics. In Asymptotics, Nonparametrics and Time Series: A Tribute, pages 639–667. Marcel Dekker, 1998.

    Google Scholar 

  22. A. Gibbs and F. Su. On choosing and bounding probability metrics. International Statistical Review, 70:419–435, 2002.

    Article  MATH  Google Scholar 

  23. K. Ide, M. Courier, M. Ghil, and A. Lorenc. Unified notation for assimilation: Operational, sequential and variational. J. Met. Soc. Japan, 75:181–189, 1997.

    Google Scholar 

  24. K. Ide and C. Jones. Special issue on the mathematics of data assimilation. Physica D, 230:vii–viii, 2007.

    Google Scholar 

  25. M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Evaluation of Gaussian approximations for data assimilation in reservoir models. Computational Geosciences, 17:851–885, 2013.

    Article  MathSciNet  Google Scholar 

  26. A. Jazwinski. Stochastic Processes and Filtering Theory, volume 63. Academic Pr, 1970.

    Google Scholar 

  27. E. Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge, 2003.

    Google Scholar 

  28. K. J. H. Law and A. M. Stuart. Evaluating data assimilation algorithms. Mon. Wea. Rev., 140:3757–3782, 2012.

    Article  Google Scholar 

  29. E. Lorenz. Deterministic nonperiodic flow. Atmos J Sci, 20:130–141, 1963.

    Article  Google Scholar 

  30. E. Lorenz. The problem of deducing the climate from the governing equations. Tellus, 16(1):1–11, 1964.

    Article  Google Scholar 

  31. E. Lorenz. Predictability: A problem partly solved. In Proc. Seminar on Predictability, volume 1, pages 1–18, 1996.

    Google Scholar 

  32. A. Majda, D. Giannakis, and I. Horenko. Information theory, model error and predictive skill of stochastic models for complex nonlinear systems. Physica D, 241:1735–1752, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Majda and X. Wang. Nonlinear Dynamics and Statistical Theories for Geophysical Flows. Cambridge, Cambridge, 2006.

    Book  MATH  Google Scholar 

  34. S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer-Verlag London Ltd., London, 1993.

    Book  MATH  Google Scholar 

  35. N. Nichols. Data assimilation: aims and basic concepts. In Data Assimilation for the Earth System, Editors R. Swinbank, V. Shutyaev, W.A. Lahoz, pages 9–20. Kluwer, 2003.

    Google Scholar 

  36. D. Oliver, A. Reynolds, and N. Liu. Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge Univ Pr, 2008.

    Google Scholar 

  37. E. Schröder. Ueber iterirte Functionen. Mathematische Annalen, 3(2):296–322, 1870.

    Article  MathSciNet  Google Scholar 

  38. T. Snyder, T. Bengtsson, P. Bickel, and J. Anderson. Obstacles to high-dimensional particle filtering. Mon. Wea. Rev.., 136:4629–4640, 2008.

    Article  Google Scholar 

  39. C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, volume 41 of Applied Mathematical Sciences. Springer-Verlag, New York, 1982.

    Google Scholar 

  40. A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 19:451–559, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. M. Stuart and A. R. Humphries. Dynamical Systems and Numerical Analysis, volume 2 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  42. R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1997.

    Google Scholar 

  43. W. Tucker. The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math., 328(12):1197–1202, 1999.

    Article  MATH  Google Scholar 

  44. W. Tucker. A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math., 2(1):53–117, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. W. Van der Vaart. Asymptotic Statistics, volume 3. Cambridge University Press, 2000.

    Google Scholar 

  46. P. van Leeuwen. Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Q.J.Roy.Met.Soc., 136(653):1991–1999, 2010.

    Google Scholar 

  47. S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos, volume 2 of Texts in Applied Mathematics. Springer-Verlag, New York, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

2.1 Electronic Supplementary material

Below is the link to the electronic supplementary material.

matlab files (ZIP 5 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Law, K., Stuart, A., Zygalakis, K. (2015). Discrete Time: Formulation. In: Data Assimilation. Texts in Applied Mathematics, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-20325-6_2

Download citation

Publish with us

Policies and ethics