Skip to main content

Quantifying Structural and Functional Differences Between Normal and Fibrotic Ventricles

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

  • 1780 Accesses

Abstract

Fibrosis is a significant component of cardiac remodeling in heart failure. However, such remodeling has not been fully quantified across a range of scales and the functional impacts on arrhythmogenesis are still poorly understood. Transmural ventricular tissue samples from WKY and SHR rats are imaged and analyzed structurally at the scale of myocardial laminae. New imaging protocols and immunohistochemical labeling are investigated for 3D reconstructions of cell distributions and interconnectivity. At larger scales, there are obvious structural differences between WKY and SHR tissue in fiber rotation and tissue connectivity. Electrical activation models show less significant differences in functional behavior between the two tissue types. Imaging extended volume 3D cell connectivity provides promising insights and will be used in the future to inform modeling at larger scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zipes, D.P., Wellens, H.J.J.: Sudden cardiac death. Circulation 98, 2334–2351 (1998)

    Article  Google Scholar 

  2. Schaper, J., Kostin, S., Hein, S., Elsässer, A., Arnon, E., Zimmermann, R.: Structural remodelling in heart failure. Exp. Clin. Cardiol. 7, 64–68 (2002)

    Google Scholar 

  3. Houser, S.R., Margulies, K.B., Murphy, A.M., Spinale, F.G., Francis, G.S., Prabhu, S.D., Rockman, H.A., Kass, D.A., Molkentin, J.D., Sussman, M.A., Koch, W.J.: Animal models of heart failure: a scientific statement from the American heart association. Am. Heart Assoc. Counc. Basic Cardiovasc. Sci. Counc. Clin. Cardiol. Counc. Funct. Genomics Transl. Biol. 111, 131–150 (2012)

    Google Scholar 

  4. Smaill, B.H., Zhao, J., Trew, M.L.: Three-dimensional impulse propagation in myocardium: arrhythmogenic mechanisms at the tissue level. Circ. Res. 112, 834–848 (2013)

    Article  Google Scholar 

  5. Kawara, T., Derksen, R., de Groot, J.R., Coronel, R., Tasseron, S., Linnenbank, A.C., Hauer, R.N.W., Kirkels, H., Janse, M.J., de Bakker, J.M.T.: Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation 104, 3069–3075 (2001)

    Article  Google Scholar 

  6. Pertsov, A.M.: Scale of geometric structures responsible for discontinuous propagation in myocardial tissue. In: Spooner, P.M., Joyner, R.W., Jalife, J. (eds.) Discontinuous Conduction in the Heart, pp. 273–293. Futura Press, Armonk (1997)

    Google Scholar 

  7. Tanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Vaidyanathan, R., Auerbach, D.S., Landas, S., Guiraudon, G., Jalife, J., Berenfeld, O., Kalifa, J.: Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ. Res. 101, 839–847 (2007)

    Article  Google Scholar 

  8. TenTusscher, K.H.W.J., Panfilov, A.V.: Influence of diffuse fibrosis on wave propagation in human ventricular tissue. Europace 9, vi38–vi45 (2007)

    Google Scholar 

  9. Cingolani, O.H., Yang, X.-P., Cavasin, M.A., Carretero, O.A.: Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats. Hypertension 41, 249–254 (2003)

    Article  Google Scholar 

  10. Slama, M., Ahn, J., Varagic, J., Susic, D., Frohlich, E.D.: Long-term left ventricular echocardiographic follow-up of SHR and WKY rats: effects of hypertension and age. Am. J. Physiol. Heart Circ. Physiol. 286, H181–H185 (2004)

    Article  Google Scholar 

  11. Rutherford, S.L., Trew, M.L., Sands, G.B., LeGrice, I.J., Smaill, B.H.: High-resolution 3-dimensional reconstruction of the infarct border zone: impact of structural remodeling on electrical activation. Circ. Res. 111, 301–311 (2012)

    Article  Google Scholar 

  12. Seidel, T., Draebing, T., Seemann, G., Sachse, F.B.: A semi-automatic approach for segmentation of three-dimensional microscopic image stacks. Funct. Imaging Model. Heart 7945, 300–307 (2013)

    Article  Google Scholar 

  13. Jähne, B.: Digital Image Processing. Springer, Heidelberg (2005)

    Google Scholar 

  14. Hoare, C.A.R.: Quicksort. Comput. J. 5, 10–16 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  15. Faber, G.M., Rudy, Y.: Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78, 2392–2404 (2000)

    Article  Google Scholar 

  16. LeGrice, I.J., Pope, A.J., Sands, G.B., Whalley, G., Doughty, R.N., Smaill, B.H.: Progression of myocardial remodeling and mechanical dysfunction in the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol. 303, H1353–H1365 (2012)

    Article  Google Scholar 

  17. Boluyt, M.: Matrix gene expression and decompensated heart failure: the aged SHR model. Cardiovasc. Res. 46, 239–249 (2000)

    Article  Google Scholar 

  18. Jansen, J.A., van Veen, T.A.B., de Jong, S., van der Nagel, R., van Stuijvenberg, L., Driessen, H., Labzowski, R., Oefner, C.M., Bosch, A.A., Nguyen, T.Q., Goldschmeding, R., Vos, M.A., de Bakker, J.M.T., van Rijen, H.V.M.: Reduced Cx43 expression triggers increased fibrosis due to enhanced fibroblast activity. Circ. Arrhythmia Electrophysiol. 5, 380–390 (2012)

    Article  Google Scholar 

  19. Van Rijen, H.V.M., Eckardt, D., Degen, J., Theis, M., Ott, T., Willecke, K., Jongsma, H.J., Opthof, T., de Bakker, J.M.T.: Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 109, 1048–1055 (2004)

    Article  Google Scholar 

  20. Schwab, B.C., Seemann, G., Lasher, R.A., Torres, N.S., Wulfers, E.M., Arp, M., Carruth, E.D., Bridge, J.H.B., Sachse, F.B.: Quantitative analysis of cardiac tissue including fibroblasts using three-dimensional confocal microscopy and image reconstruction: towards a basis for electrophysiological modeling. IEEE Trans. Med. Imaging 32, 862–872 (2013)

    Article  Google Scholar 

  21. Dodt, H.-U., Leischner, U., Schierloh, A., Jährling, N., Mauch, C.P., Deininger, K., Deussing, J.M., Eder, M., Zieglgänsberger, W., Becker, K.: Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007)

    Article  Google Scholar 

  22. Young, A.A., Legrice, I.J., Young, M.A., Smaill, B.H.: Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc. 192, 139–150 (1998)

    Article  Google Scholar 

  23. Dickie, R., Bachoo, R.M., Rupnick, M.A., Dallabrida, S.M., Deloid, G.M., Lai, J., Depinho, R.A., Rogers, R.A.: Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy. Microvasc. Res. 72, 20–26 (2006)

    Article  Google Scholar 

  24. Seidel, T., Draebing, T., Seemann, G., Sachse, F.B.: A semi-automatic approach for segmentation of three-dimensional microscopic image stacks of cardiac tissue. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 300–307. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Saffitz, J.E., Kanter, H.L., Green, K.G., Tolley, T.K., Beyer, E.C.: Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ. Res. 74, 1065–1070 (1994)

    Article  Google Scholar 

  26. Khwaounjoo, P., Rutherford, S.L., Scrcek, Ma., LeGrice, I.J., Trew, M.L., Smaill, B.H.: Image-based motion correction for optical mapping of cardiac electrical activity. Ann. Biomed. Eng., 1–12 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanna Khwaounjoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khwaounjoo, P., LeGrice, I.J., Trew, M.L., Smaill, B.H. (2015). Quantifying Structural and Functional Differences Between Normal and Fibrotic Ventricles. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics