Skip to main content

Left and Right Atrial Contribution to the P-wave in Realistic Computational Models

  • Conference paper
  • First Online:
Book cover Functional Imaging and Modeling of the Heart (FIMH 2015)

Abstract

ECG markers derived from the P-wave are used frequently to assess atrial function and anatomy, e.g. left atrial enlargement. While having the advantage of being routinely acquired, the processes underlying the genesis of the P-wave are not understood in their entirety. Particularly the distinct contributions of the two atria have not been analyzed mechanistically. We used an in silico approach to simulate P-waves originating from the left atrium (LA) and the right atrium (RA) separately in two realistic models.

LA contribution to the P-wave integral was limited to 30 % or less. Around 20 % could be attributed to the first third of the P-wave which reflected almost only RA depolarization. Both atria contributed to the second and last third with RA contribution being about twice as large as LA contribution. Our results foster the comprehension of the difficulties related to ECG-based LA assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ariyarajah, V., Mercado, K., Apiyasawat, S., et al.: Correlation of left atrial size with P-wave duration in interatrial block. Chest 128(4), 2615–2618 (2005)

    Article  Google Scholar 

  2. Carlson, J., Havmoller, R., Herreros, A., et al.: Can orthogonal lead indicators of propensity to atrial fibrillation be accurately assessed from the 12-lead ECG? Europace 7(2), 39–48 (2005)

    Article  Google Scholar 

  3. Chirife, R., Feitosa, G.S., Frankl, W.S.: Electrocardiographic detection of left atrial enlargement. Correlation of P wave with left atrial dimension by echocardiography. Br. Heart J. 37(12), 1281–1285 (1975)

    Article  Google Scholar 

  4. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–321 (1998)

    Google Scholar 

  5. van Dam, P.M., van Oosterom, A.: Volume conductor effects involved in the genesis of the P wave. Europace 7(S2), 30–38 (2005)

    Google Scholar 

  6. Debbas, N.M., Jackson, S.H., de Jonghe, D., et al.: Human atrial repolarization: effects of sinus rate, pacing and drugs on the surface electrocardiogram. J. Am. Coll. Cardiol. 33(2), 358–365 (1999)

    Article  Google Scholar 

  7. Ecabert, O., Peters, J., Schramm, H., et al.: Automatic model-based segmentation of the heart in CT images. IEEE Trans. Med. Imaging 27(9), 1189–1201 (2008)

    Article  Google Scholar 

  8. Hancock, E.W., Deal, B.J., Mirvis, D.M., et al.: AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V. J. Am. Coll. Cardiol. 53(11), 992–1002 (2009)

    Article  Google Scholar 

  9. Hazen, M.S., Marwick, T.H., Underwood, D.A.: Diagnostic accuracy of the resting electrocardiogram in detection and estimation of left atrial enlargement: an echocardiographic correlation in 551 patients. Am. Heart. J. 122(3 Pt 1), 823–828 (1991)

    Article  Google Scholar 

  10. Ho, S.Y., Sanchez-Quintana, D., Cabrera, J.A., et al.: Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 10(11), 1525–1533 (1999)

    Article  Google Scholar 

  11. Hopkins, C.B., Barrett, O.J.: Electrocardiographic diagnosis of left atrial enlargement. Role of the P terminal force in lead V1. J. Electrocardiol. 22(4), 359–363 (1989)

    Article  Google Scholar 

  12. Ihara, Z., van Oosterom, A., Hoekema, R.: Atrial repolarization as observable during the PQ interval. J. Electrocardiol. 39(3), 290–297 (2006)

    Article  Google Scholar 

  13. Josephson, M.E., Kastor, J.A., Morganroth, J.: Electrocardiographic left atrial enlargement. Electrophysiologic, echocardiographic and hemodynamic correlates. Am. J. Cardiol. 39(7), 967–971 (1977)

    Article  Google Scholar 

  14. Keller, D.U.J., Weber, F.M., Seemann, G., et al.: Ranking the influence of tissue conductivities on ECGs. IEEE Trans. Biomed. Eng. 57(7), 1568–1576 (2010)

    Article  Google Scholar 

  15. Krueger, M.W., Dorn, A., Keller, D.U.J., et al.: In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Med. Biol. Eng. Comput. 51(10), 1105–1119 (2013)

    Article  Google Scholar 

  16. Krueger, M.W., Seemann, G., Rhode, K., et al.: Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency ablation of atrial fibrillation. IEEE Trans. Med. Imaging 32(1), 73–84 (2013)

    Article  Google Scholar 

  17. Krueger, M.W., Severi, S., Rhode, K., et al.: Alterations of atrial electrophysiology related to hemodialysis session: insights from a multiscale computer model. J. Electrocardiol. 44(2), 176–183 (2011)

    Article  Google Scholar 

  18. Lemery, R., Birnie, D., Tang, A.S.L., et al.: Normal atrial activation and voltage during sinus rhythm in the human heart: an endocardial and epicardial mapping study in patients with a history of atrial fibrillation. J. Cardiovasc. Electrophysiol. 18(4), 402–408 (2007)

    Article  Google Scholar 

  19. Lipman, B.S.: Clinical scalar electrocardiography. Acad. Med. 40, 815 (1965)

    Google Scholar 

  20. Lu, W., Zhu, X., Chen, W., et al.: A computer model based on real anatomy for electrophysiology study. Adv. Eng. Softw. 42(7), 463–476 (2011)

    Article  MATH  Google Scholar 

  21. de Luna, A.B., Platonov, P., Cosio, F.G., et al.: Interatrial blocks. A separate entity from left atrial enlargement. J. Electrocardiol. 45, 445–451 (2012)

    Article  Google Scholar 

  22. Magnani, J.W., Williamson, M.A., Ellinor, P.T., et al.: P wave indices: current status and future directions in epidemiology, clinical, and research applications. Circ. Arrhythm. Electrophysiol. 2(1), 72–79 (2009)

    Article  Google Scholar 

  23. Michelucci, A., Bagliani, G., Colella, A., et al.: P wave assessment: state of the art update. Card. Electrophysiol. Rev. 6(3), 215–220 (2002)

    Article  Google Scholar 

  24. Morris, J.J.J., Estes, E.H.J., Whalen, R.E., et al.: P-wave analysis in valvular heart disease. Circulation 29, 242–252 (1964)

    Article  Google Scholar 

  25. Ndrepepa, G., Zrenner, B., Deisenhofer, I., et al.: Relationship between surface electrocardiogram characteristics and endocardial activation sequence in patients with typical atrial flutter. Z. Kardiol. 89(6), 527–537 (2000)

    Article  Google Scholar 

  26. van Oosterom, A., Jacquemet, V.: Genesis of the P wave: atrial signals as generated by the equivalent double layer source model. Europace 7(S2), 21–29 (2005)

    Article  Google Scholar 

  27. Ozdemir, O., Soylu, M., Demir, A.D., et al.: P-wave durations as a predictor for atrial fibrillation development in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 94(2–3), 163–166 (2004)

    Article  Google Scholar 

  28. Platonov, P.G., Mitrofanova, L., Ivanov, V., et al.: Substrates for intra-atrial and interatrial conduction in the atrial septum. Heart Rhythm 5(8), 1189–1195 (2008)

    Article  Google Scholar 

  29. Potse, M., Dube, B., Vinet, A.: Cardiac anisotropy in boundary-element models for the electrocardiogram. Med. Biol. Eng. Comput. 47(7), 719–729 (2009)

    Article  Google Scholar 

  30. Seemann, G., Sachse, F.B., Karl, M., et al.: Framework for modular, flexible and efficient solving the cardiac bidomain equation using PETSc. Math. Ind. 15, 363–369 (2010)

    Google Scholar 

  31. Wagner, G.S., Strauss, D.G.: Marriott’s Practical Electrocardiography. Lippincott Williams & Wilkins, Philadelphia (2013)

    Google Scholar 

  32. Wilhelms, M., Hettmann, H., Maleckar, M.M.C., et al.: Benchmarking electrophysiological models of human atrial myocytes. Front. Physiol. 3, 1–16 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Loewe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Loewe, A., Krueger, M.W., Platonov, P.G., Holmqvist, F., Dössel, O., Seemann, G. (2015). Left and Right Atrial Contribution to the P-wave in Realistic Computational Models. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics