Skip to main content

Myocardial Stiffness Estimation: A Novel Cost Function for Unique Parameter Identification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

Abstract

Myocardial stiffness is a clinical biomarker used to diagnose and stratify diseases such as heart failure. This biomechanical property can be inferred from the personalisation of computational cardiac models to clinical measures. Nevertheless, previous attempts have been unable to determine a unique set of material constitutive parameters. In this study we address this shortcoming by proposing a new cost function that allows us to uncouple key parameters and uniquely describe passive material properties in patients from available clinical data.

P. Lamata—Equal contribution senior authors.

S.A. Niederer—Equal contribution senior authors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.nice.org.uk/guidance/cg108/resources/guidance-chronic-heart-failure- pdf.

  2. 2.

    http://cheart.co.uk/.

  3. 3.

    http://www.cmiss.org/cmgui.

References

  1. Augenstein, K.F., Cowan, B.R., LeGrice, I.J., Nielsen, P.M.F., Young, A.A.: Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. J. Biomech. Eng. 127(1), 148 (2005)

    Article  Google Scholar 

  2. Bermejo, J., Yotti, R., Pérez del Villar, C., del Álamo, J.C., Rodríguez-Pérez, D., Martínez-Legazpi, P., Benito, Y., Antoranz, J.C., Desco, M.M., González-Mansilla, A., Barrio, A., Elízaga, J., Fernández-Avilés, F.: Diastolic chamber properties of the left ventricle assessed by global fitting of pressure-volume data: improving the gold standard of diastolic function. J. Appl. Physiol. (Bethesda, Md.: 1985) 115(4), 556–568 (2013)

    Article  Google Scholar 

  3. Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 42–55 (1991)

    Article  Google Scholar 

  4. Hadjicharalambous, M., Chabiniok, R., Asner, L., Sammut, E., Wong, J., Carr-White, G., Lee, J., Razavi, R., Smith, N., Nordsletten, D.: Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI. Biomech. Model. Mechanobiol. 1–22 (2014)

    Google Scholar 

  5. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. Ser. A, Math. Phys. Eng. Sci. 367, 3445–3475 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Karwatowski, S.P., Brecker, S.J.D., Yang, G.Z., Firmin, D.N., Sutton, M.S.J., Underwood, S.R.: Cardiovascular physiology: a comparison of left ventricular myocardial velocity in diastole measured by magnetic resonance and left ventricular filling measured by doppler echocardiography. Eur. Heart J. 17(5), 795–802 (1996)

    Article  Google Scholar 

  7. Lamata, P., Niederer, S., Nordsletten, D., Barber, D.C., Roy, I., Hose, D.R., Smith, N.: An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med. Image Anal. 15(6), 801–813 (2011)

    Article  Google Scholar 

  8. Lamata, P., Roy, I., Blazevic, B., Crozier, A., Land, S., Niederer, S.A., Hose, D.R., Smith, N.P.: Quality metrics for high order meshes: analysis of the mechanical simulation of the heart beat. IEEE Trans. Med. Imaging 32(1), 130–138 (2013)

    Article  Google Scholar 

  9. Lamata, P., Sinclair, M., Kerfoot, E., Lee, A., Crozier, A., Blazevic, B., Land, S., Lewandowski, A.J., Barber, D., Niederer, S., Smith, N.: An automatic service for the personalization of ventricular cardiac meshes. J. Royal Soc. Interface/Royal Soc. 11(91), 20131023 (2014)

    Article  Google Scholar 

  10. Land, S., Niederer, S., Lamata, P.: Estimation of diastolic biomarkers: sensitiviy to fibre orientation. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2014. LNCS, vol. 8896, pp. 105–113. Springer, Heidelberg (2015)

    Google Scholar 

  11. Nordbø, O., Lamata, P., Land, S., Niederer, S., Aronsen, J.M., Louch, W.E., Sjaastad, L., Martens, H., Gjuvsland, A.B., Tøndel, K., Torp, H., Lohezic, M., Schneider, J.E., Remme, E.W., Smith, N., Omholt, S.W., Vik, J.O.: A computational pipeline for quantification of mouse myocardial stiffness parameters. Comput. Biol. Med. 53, 63–75 (2014)

    Article  Google Scholar 

  12. Nordsletten, D.A., Niederer, S.A., Nash, M.P., Hunter, P.J., Smith, N.P.: Coupling multi-physics models to cardiac mechanics. Progr. Biophys. Mol. Biol. 104(1–3), 77–88 (2011)

    Article  Google Scholar 

  13. Shi, W., Jantsch, M., Aljabar, P., Pizarro, L., Bai, W., Wang, H., O’Regan, D., Zhuang, X., Rueckert, D.: Temporal sparse free-form deformations. Med. Image Anal. 17(7), 779–789 (2013)

    Article  Google Scholar 

  14. Sutton, M.G.S.J., Sharpe, N.: Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25), 2981–2988 (2000)

    Article  Google Scholar 

  15. Usyk, T., Mazhari, R., McCulloch, A.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. Phys. Sci. Solids 61(1–3), 143–164 (2000)

    MATH  Google Scholar 

  16. de Vecchi, A., Gomez, A., Pushparajah, K., Schaeffter, T., Nordsletten, D.A., Simpson, J.M., Penney, G.P., Smith, N.P.: Towards a fast and efficient approach for modelling the patient-specific ventricular haemodynamics. Prog. Biophys. Mol. Biol. 116(1), 3–10 (2014)

    Article  Google Scholar 

  17. Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Image Anal. 13, 773–784 (2009)

    Article  Google Scholar 

  18. Westermann, D., Kasner, M., Steendijk, P., Spillmann, F., Riad, A., Weitmann, K., Hoffmann, W., Poller, W., Pauschinger, M., Schultheiss, H.P., Tschöpe, C.: Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117(16), 2051–2060 (2008)

    Article  Google Scholar 

  19. Whiteley, J.P., Bishop, M.J., Gavaghan, D.J.: Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Bull. Math. Biol. 69(7), 2199–2225 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2), 133–146 (2013)

    Article  Google Scholar 

  21. Xi, J., Shi, W., Rueckert, D., Razavi, R., Smith, N.P., Lamata, P.: Understanding the need of ventricular pressure for the estimation of diastolic biomarkers. Biomech. Model. Mechanobiol. 13(4), 747–757 (2014)

    Article  Google Scholar 

  22. Zienkiewicz, O., Taylor, R., Zhu, J.: The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, UK (2013)

    Google Scholar 

  23. Zile, M.R.: New concepts in diastolic dysfunction and diastolic heart failure: part i: diagnosis, prognosis, and measurements of diastolic function. Circulation 105(11), 1387–1393 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the NIHR Biomedical Research Centre at Guy’s and St. Thomas’ NHS Foundation Trust and KCL, and support from the Wellcome Trust and EPSRC Centre of Excellence in Medical Engineering. S.A.N is supported by BHF PG/11/101/29212. PL holds a Sir Henry Dale Fellowship funded jointly by the Wellcome Trust and the Royal Society (grant no. 099973/Z/12/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Nasopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nasopoulou, A. et al. (2015). Myocardial Stiffness Estimation: A Novel Cost Function for Unique Parameter Identification . In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics