Advertisement

Myocardial Stiffness Estimation: A Novel Cost Function for Unique Parameter Identification

  • Anastasia NasopoulouEmail author
  • Bojan Blazevic
  • Andrew Crozier
  • Wenzhe Shi
  • Anoop Shetty
  • C. Aldo Rinaldi
  • Pablo Lamata
  • Steven A. Niederer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

Myocardial stiffness is a clinical biomarker used to diagnose and stratify diseases such as heart failure. This biomechanical property can be inferred from the personalisation of computational cardiac models to clinical measures. Nevertheless, previous attempts have been unable to determine a unique set of material constitutive parameters. In this study we address this shortcoming by proposing a new cost function that allows us to uncouple key parameters and uniquely describe passive material properties in patients from available clinical data.

Keywords

Cardiac mechanics Myocardial stiffness Parameter estimation Myocardial characterisation Diastolic biomarkers 

Notes

Acknowledgements

The authors would like to acknowledge financial support from the NIHR Biomedical Research Centre at Guy’s and St. Thomas’ NHS Foundation Trust and KCL, and support from the Wellcome Trust and EPSRC Centre of Excellence in Medical Engineering. S.A.N is supported by BHF PG/11/101/29212. PL holds a Sir Henry Dale Fellowship funded jointly by the Wellcome Trust and the Royal Society (grant no. 099973/Z/12/Z).

References

  1. 1.
    Augenstein, K.F., Cowan, B.R., LeGrice, I.J., Nielsen, P.M.F., Young, A.A.: Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. J. Biomech. Eng. 127(1), 148 (2005)CrossRefGoogle Scholar
  2. 2.
    Bermejo, J., Yotti, R., Pérez del Villar, C., del Álamo, J.C., Rodríguez-Pérez, D., Martínez-Legazpi, P., Benito, Y., Antoranz, J.C., Desco, M.M., González-Mansilla, A., Barrio, A., Elízaga, J., Fernández-Avilés, F.: Diastolic chamber properties of the left ventricle assessed by global fitting of pressure-volume data: improving the gold standard of diastolic function. J. Appl. Physiol. (Bethesda, Md.: 1985) 115(4), 556–568 (2013)CrossRefGoogle Scholar
  3. 3.
    Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 42–55 (1991)CrossRefGoogle Scholar
  4. 4.
    Hadjicharalambous, M., Chabiniok, R., Asner, L., Sammut, E., Wong, J., Carr-White, G., Lee, J., Razavi, R., Smith, N., Nordsletten, D.: Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI. Biomech. Model. Mechanobiol. 1–22 (2014)Google Scholar
  5. 5.
    Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. Ser. A, Math. Phys. Eng. Sci. 367, 3445–3475 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Karwatowski, S.P., Brecker, S.J.D., Yang, G.Z., Firmin, D.N., Sutton, M.S.J., Underwood, S.R.: Cardiovascular physiology: a comparison of left ventricular myocardial velocity in diastole measured by magnetic resonance and left ventricular filling measured by doppler echocardiography. Eur. Heart J. 17(5), 795–802 (1996)CrossRefGoogle Scholar
  7. 7.
    Lamata, P., Niederer, S., Nordsletten, D., Barber, D.C., Roy, I., Hose, D.R., Smith, N.: An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med. Image Anal. 15(6), 801–813 (2011)CrossRefGoogle Scholar
  8. 8.
    Lamata, P., Roy, I., Blazevic, B., Crozier, A., Land, S., Niederer, S.A., Hose, D.R., Smith, N.P.: Quality metrics for high order meshes: analysis of the mechanical simulation of the heart beat. IEEE Trans. Med. Imaging 32(1), 130–138 (2013)CrossRefGoogle Scholar
  9. 9.
    Lamata, P., Sinclair, M., Kerfoot, E., Lee, A., Crozier, A., Blazevic, B., Land, S., Lewandowski, A.J., Barber, D., Niederer, S., Smith, N.: An automatic service for the personalization of ventricular cardiac meshes. J. Royal Soc. Interface/Royal Soc. 11(91), 20131023 (2014)CrossRefGoogle Scholar
  10. 10.
    Land, S., Niederer, S., Lamata, P.: Estimation of diastolic biomarkers: sensitiviy to fibre orientation. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2014. LNCS, vol. 8896, pp. 105–113. Springer, Heidelberg (2015) Google Scholar
  11. 11.
    Nordbø, O., Lamata, P., Land, S., Niederer, S., Aronsen, J.M., Louch, W.E., Sjaastad, L., Martens, H., Gjuvsland, A.B., Tøndel, K., Torp, H., Lohezic, M., Schneider, J.E., Remme, E.W., Smith, N., Omholt, S.W., Vik, J.O.: A computational pipeline for quantification of mouse myocardial stiffness parameters. Comput. Biol. Med. 53, 63–75 (2014)CrossRefGoogle Scholar
  12. 12.
    Nordsletten, D.A., Niederer, S.A., Nash, M.P., Hunter, P.J., Smith, N.P.: Coupling multi-physics models to cardiac mechanics. Progr. Biophys. Mol. Biol. 104(1–3), 77–88 (2011)CrossRefGoogle Scholar
  13. 13.
    Shi, W., Jantsch, M., Aljabar, P., Pizarro, L., Bai, W., Wang, H., O’Regan, D., Zhuang, X., Rueckert, D.: Temporal sparse free-form deformations. Med. Image Anal. 17(7), 779–789 (2013)CrossRefGoogle Scholar
  14. 14.
    Sutton, M.G.S.J., Sharpe, N.: Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25), 2981–2988 (2000)CrossRefGoogle Scholar
  15. 15.
    Usyk, T., Mazhari, R., McCulloch, A.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. Phys. Sci. Solids 61(1–3), 143–164 (2000)zbMATHGoogle Scholar
  16. 16.
    de Vecchi, A., Gomez, A., Pushparajah, K., Schaeffter, T., Nordsletten, D.A., Simpson, J.M., Penney, G.P., Smith, N.P.: Towards a fast and efficient approach for modelling the patient-specific ventricular haemodynamics. Prog. Biophys. Mol. Biol. 116(1), 3–10 (2014)CrossRefGoogle Scholar
  17. 17.
    Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Image Anal. 13, 773–784 (2009)CrossRefGoogle Scholar
  18. 18.
    Westermann, D., Kasner, M., Steendijk, P., Spillmann, F., Riad, A., Weitmann, K., Hoffmann, W., Poller, W., Pauschinger, M., Schultheiss, H.P., Tschöpe, C.: Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117(16), 2051–2060 (2008)CrossRefGoogle Scholar
  19. 19.
    Whiteley, J.P., Bishop, M.J., Gavaghan, D.J.: Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Bull. Math. Biol. 69(7), 2199–2225 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Rueckert, D., Razavi, R., Smith, N.P.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2), 133–146 (2013)CrossRefGoogle Scholar
  21. 21.
    Xi, J., Shi, W., Rueckert, D., Razavi, R., Smith, N.P., Lamata, P.: Understanding the need of ventricular pressure for the estimation of diastolic biomarkers. Biomech. Model. Mechanobiol. 13(4), 747–757 (2014)CrossRefGoogle Scholar
  22. 22.
    Zienkiewicz, O., Taylor, R., Zhu, J.: The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, UK (2013) Google Scholar
  23. 23.
    Zile, M.R.: New concepts in diastolic dysfunction and diastolic heart failure: part i: diagnosis, prognosis, and measurements of diastolic function. Circulation 105(11), 1387–1393 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anastasia Nasopoulou
    • 1
    Email author
  • Bojan Blazevic
    • 1
  • Andrew Crozier
    • 1
  • Wenzhe Shi
    • 4
  • Anoop Shetty
    • 1
    • 3
  • C. Aldo Rinaldi
    • 1
    • 3
  • Pablo Lamata
    • 1
    • 2
  • Steven A. Niederer
    • 1
  1. 1.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK
  3. 3.Department of CardiologyGuy’s and St. Thomas’ NHS TrustLondonUK
  4. 4.Department of ComputingImperial College LondonLondonUK

Personalised recommendations