Advertisement

Fluid-Structure Interaction Model of Human Mitral Valve within Left Ventricle

  • Hao GaoEmail author
  • Nan Qi
  • Xingshuang Ma
  • Boyce E. Griffith
  • Colin Berry
  • Xiaoyu Luo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

We present an integrated model of mitral valve coupled with the left ventricle. The model is derived from clinical images and takes into account of the important valvular features, left ventricle contraction, nonlinear soft tissue mechanics, fluid structure interaction, and the MV-LV interaction. This model is compared with a corresponding mitral-tube model, and differences in the results are discussed. Although the model is a step closer towards simulating physiological realistic situation, further work is required to ensure that the highly complex valvular-ventricular interaction, and the fluid-structure interaction, can be reliably represented.

Keywords

Left Ventricle Mitral Valve Cardiac Magnetic Resonance Image Left Ventricle Wall Inflow Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is funded by the UK EPSRC (EP/I1029990), and the British Heart Foundation (PG/14/64/31043, PG/11/2/28474). B.E.G. acknowledges research support from the American Heart Association (AHA award 10 SDG4320049), the National Institutes of Health (award HL117063), and the National Science Foundation (awards DMS 1016554 and ACI 1047734).

References

  1. 1.
    Chandran, K.B., Kim, H.: Computational mitral valve evaluation and potential clinical applications. Ann. Biomed. Eng. 1–15 (2014). doi: 10.1007/s10439-014-1094-5
  2. 2.
    Conti, C.A., Stevanella, M., Maffessanti, F., Trunfio, S., Votta, E., Roghi, A., Parodi, O., Caiani, E.G., Redaelli, A.: Mitral valve modelling in ischemic patients: finite element analysis from cardiac magnetic resonance imaging. In: Computing in Cardiology, pp. 1059–1062. IEEE (2010)Google Scholar
  3. 3.
    Einstein, D.R., Kunzelman, K.S., Reinhall, P.G., Nicosia, M.A., Cochran, R.P.: Non-linear fluid-coupled computational model of the mitral valve. J. Hear. Valve Dis. 14(3), 376–385 (2005)Google Scholar
  4. 4.
    Einstein, D.R., Reinhall, P., Nicosia, M., Cochran, R.P., Kunzelman, K.: Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Meth. Biomech. Biomed. Eng. 6(1), 33–44 (2003)CrossRefGoogle Scholar
  5. 5.
    Gao, H., Carrick, D., Berry, C., Griffith, B.E., Luo, X.: Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA J. Appl. Math. 79, 978–1010 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Gao, H., Ma, X., Qi, N., Berry, C., Griffith, B.E., Luo, X.: A finite strain nonlinear human mitral valve model with fluid-structure interaction. Int. J. Numer. Meth. Biomed. Eng. 30(12), 1597–1613 (2014)CrossRefGoogle Scholar
  7. 7.
    Griffith, B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Meth. Biomed. Eng. 28(3), 317–345 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Griffith, B.E., Luo, X.: Hybrid finite difference/finite element version of the immersed boundary method (2012). Submitted, preprint available from http://www.cims.nyu.edu/griffith
  9. 9.
    Kamensky, D., Hsu, M.C., Schillinger, D., Evans, J.A., Aggarwal, A., Bazilevs, Y., Sacks, M.S., Hughes, T.J.: An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Comput. Meth. Appl. Mech. Eng. 284, 1005–1053 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kunzelman, K.S., Cochran, R.: Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7(1), 71–78 (1992)CrossRefGoogle Scholar
  11. 11.
    Kunzelman, K.S., Einstein, D.R., Cochran, R.P.: Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. Royal Soc. B: Biol. Sci. 362(1484), 1393–1406 (2007)CrossRefGoogle Scholar
  12. 12.
    Lau, K., Diaz, V., Scambler, P., Burriesci, G.: Mitral valve dynamics in structural and fluid-structure interaction models. Med. Eng. Phys. 32(9), 1057–1064 (2010)CrossRefGoogle Scholar
  13. 13.
    Ma, X., Gao, H., Griffith, B.E., Berry, C., Luo, X.: Image-based fluid-structure interaction model of the human mitral valve. Comput. Fluids 71, 417–425 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nishimura, R.A., Tajik, A.J.: Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J. Am. Coll. Cardiol. 30(1), 8–18 (1997)CrossRefGoogle Scholar
  15. 15.
    Ray, R., Chambers, J.: Mitral valve disease. Int. J. Clin. Prac. 68(10), 1216–1220 (2014)CrossRefGoogle Scholar
  16. 16.
    Sun, W., Abad, A., Sacks, M.S.: Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6), 905–914 (2005)CrossRefGoogle Scholar
  17. 17.
    Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41(1), 142–153 (2013)CrossRefGoogle Scholar
  18. 18.
    Watton, P.N., Luo, X.Y., Yin, M., Bernacca, G.M., Wheatley, D.J.: Effect of ventricle motion on the dynamic behaviour of chorded mitral valves. J. Fluids Struct. 24(1), 58–74 (2008)CrossRefGoogle Scholar
  19. 19.
    Yin, M., Luo, X., Wang, T., Watton, P.: Effects of flow vortex on a chorded mitral valve in the left ventricle. Int. J. Numer. Meth. Biomed. Eng. 26(3–4), 381–404 (2010)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hao Gao
    • 1
    Email author
  • Nan Qi
    • 1
  • Xingshuang Ma
    • 2
  • Boyce E. Griffith
    • 3
  • Colin Berry
    • 4
  • Xiaoyu Luo
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
  2. 2.School of Aerospace EngineeringChongqing UniversityChongqingChina
  3. 3.Department of MathematicsUniversity of North CarolinaChapel HillUSA
  4. 4.Institute of Cardiovascular and Medical ScienceUniversity of GlasgowGlasgowUK

Personalised recommendations