Cross-Frame Ultrasonic Color Doppler Flow Heart Image Unwrapping

  • Artem YatchenkoEmail author
  • Andrey Krylov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)


Ultrasonic color Doppler flow image unwrapping algorithm that uses cross-frame connection is proposed and compared with other unwrapping methods. An original complex phase preliminary filtration is used to suppress a false-aliasing artifact and to improve the results. Flow variances are used as weight coefficients in the minimization energy function. For the comparison a test data series is constructed. It uses an anatomic 3D left ventricle region model for the simulation of the blood flow. Experiments show that cross-frame weights significantly improve the quality of unwrapping.


Ultrasound color doppler flow mapping Cross-frame Phase unwrapping Heart Blood flow model Algorithms comparison 



The work was supported by Russian Science Foundation grant #14-11-00308.


  1. 1.
    Bioucas-Dias, J.M., Valadao, G.: Phase unwrapping via graph cuts. IEEE Trans. Image Process. 16(3), 698–709 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Yatchenko, A., Krylov, A., Gavrilov, A., Arkhipov, I.: Graph-cut based antialiasing for doppler ultrasound color flow medical imaging. In: IEEE VCIP, pp. 1–4 (2011)Google Scholar
  3. 3.
    Pritt, M.D., Shipman, J.S.: Least-squares two-dimensional phase unwrapping using FFTs. IEEE Trans. Geosci. Remote Sens. 32(3), 706–708 (1994)CrossRefGoogle Scholar
  4. 4.
    Ghiglia, D.C., Romero, L.A.: Minimum Lp-norm two-dimensional phase unwrapping. J. Opt. Soc. Am. A 13(10), 1999–2013 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yamaki, R., Hirose, A.: Singular unit restoration in interferograms based on complex-valued Markov random field model for phase unwrapping. Geosci. Remote Sens. Lett. 6(1), 18–22 (2009)CrossRefGoogle Scholar
  6. 6.
    Yatchenko, A., Krylov, A., Sandrikov, V., Kulagina, T.: Regularizing method for phase antialiasing in color doppler flow mapping. Neurocomputing 139, 77–83 (2014)CrossRefGoogle Scholar
  7. 7.
    Yatchenko, A., Krylov, A., Gavrilov, A., Sandrikov, V., Kulagina, T.: Image preprocessing for color Doppler flow antialiasing using power and complex phase data. In: IEEE International Conference on Signal Processing, pp. 1072–1076 (2014)Google Scholar
  8. 8.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar
  9. 9.
    Brown, S., Wang, J., Ho, H., Tullis, S.: Numeric simulation of fluid-structure interaction in the aortic arch. In: Wittek, A., Miller, K., Nielsen, P.M.F. (eds.) Computational Biomechanics for Medicine, pp. 13–23. Springer, New York (2013)CrossRefGoogle Scholar
  10. 10.
    Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn, pp. 277–303. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Davidson, L.: How to estimate the resolution of an LES of recirculating flow. Qual. Reliab. Large-Eddy Simul. 16, 269–286 (2011)CrossRefGoogle Scholar
  12. 12.
    Evans, D.H., Jensen, J.A., Nielsen, M.B.: Ultrasonic colour Doppler imaging. Interface Focus 1(4), 490–502 (2011)CrossRefGoogle Scholar
  13. 13.
    Jensen, J.A.: Stationary echo canceling in velocity estimation by time-domain cross-correlation. IEEE Trans. Med. Imaging 12, 471–477 (1993)CrossRefGoogle Scholar
  14. 14.
    Brands, P.J., Hoeks, A.P., Hofstra, L., Reneman, R.S.: A noninvasive method to estimate wall shear rate using ultrasound. Ultrasound Med. Biol. 21, 171–185 (1995)CrossRefGoogle Scholar
  15. 15.
    Heimdal, A., Torp, H.: Ultrasound Doppler measurements of low velocity blood flow: limitations due to clutter signals from vibrating muscles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 873–881 (1997)CrossRefGoogle Scholar
  16. 16.
    Kadi, A.P., Loupas, T.: On the performance of regression and step-initialized IIR clutter filters for color doppler systems in diagnostic medical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(5), 927–937 (1995)CrossRefGoogle Scholar
  17. 17.
    Tysoe, C., Evans, D.H.: Bias in mean frequency estimation of Doppler signals due to wall clutter filters. Ultrasound Med. Biol. 21, 671–677 (1995)CrossRefGoogle Scholar
  18. 18.
    Jamriska, O., Sykora, D., Hornung, A.: Cache-efficient graph cuts on structured grids. In: IEEE Transactions on Computer Vision and Pattern Recognition, pp. 3673–3680 (2012)Google Scholar
  19. 19.
    Garcia, D., del Alamo, J.C., et al.: Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans. Med. Imaging 29(10), 1701–1713 (2010)CrossRefGoogle Scholar
  20. 20.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations