Cardiac Motion Estimation Using Ultrafast Ultrasound Imaging Tested in a Finite Element Model of Cardiac Mechanics

  • Maartje M. NillesenEmail author
  • Anne E. C. M. Saris
  • Hendrik H. G. Hansen
  • Stein Fekkes
  • Frebus J. van Slochteren
  • Peter H. M. Bovendeerd
  • Chris L. De Korte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)


Recent developments in ultrafast ultrasound imaging allow accurate assessment of 3D cardiac deformation in cardiac phases with high deformation rates. This paper investigates the performance of a multiple spherical wave (SW) ultrasound transmission scheme in combination with a motion estimation algorithm for cardiac deformation assessment at high frame rates. Ultrasound element data of a realistically deforming 3D cardiac finite element model were simulated for a phased array transducer, transmitting five SWs (PRF 2500 Hz). After delay-and-sum beamforming, coherent compounding of multiple SW transmissions was performed to generate radiofrequency data (frame rate 500 Hz). Axial and lateral displacements were determined using a normalized cross-correlation-based technique. Good agreement was obtained between estimated and ground truth displacements derived from the model over the cardiac cycle. This study indicates that high frame rate displacement estimation using multiple SWs is feasible and serves as an important step towards high frame rate 3D cardiac deformation imaging.


Ultrafast ultrasound imaging Cardiac deformation imaging Cardiac modeling 



This research is supported by the Dutch Technology Foundation STW (NKG 12122), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.


  1. 1.
    Konofagou, E.E., D’hooge, J., Ophir, J.: Myocardial elastography-a feasibility study in vivo. Ultrasound Med. Biol. 28, 475–482 (2002)CrossRefGoogle Scholar
  2. 2.
    Leitman, M., Lysyansky, P., Sidenko, S., Shir, V., Peleg, E., Binenbaum, M., Kaluski, E., Krakover, R., Vered, Z.: Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J. Am. Soc. Echocardiogr. 17, 1021–1029 (2004)CrossRefGoogle Scholar
  3. 3.
    Lopata, R.G., Nillesen, M.M., Thijssen, J.M., Kapusta, L., de Korte, C.L.: Three-dimensional cardiac strain imaging in healthy children using RF-data. Ultrasound Med. Biol. 37(9), 1399–1408 (2011)CrossRefGoogle Scholar
  4. 4.
    Bohs, L.N., Trahey, G.E.: A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Trans. Biomed. Eng. 38(3), 280–286 (1991)CrossRefGoogle Scholar
  5. 5.
    Céspedes, E.I., de Korte, C.L., van der Steen, A.W.: Echo decorrelation from displacement gradients in elasticity and velocity estimation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 791–801 (1999)CrossRefGoogle Scholar
  6. 6.
    Montaldo, G., Tanter, M., Bercoff, J., Benech, N., Fink, M.: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(3), 489–506 (2009)CrossRefGoogle Scholar
  7. 7.
    Hasegawa, H., Kanai, H.: High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming. J. Med. Ultrasound 38(33), 129–140 (2011)CrossRefGoogle Scholar
  8. 8.
    Tong, L., Gao, H., Choi, H.F., D’hooge, J.: Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(8), 1654–1663 (2012)CrossRefGoogle Scholar
  9. 9.
    Kerckhofs, R.C.P., Bovendeerd, P.H.M., Kotte, J.C.S., Prinzen, F.W., Smits, K., Arts, T.: Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 31, 536–547 (2003)CrossRefGoogle Scholar
  10. 10.
    Bovendeerd, P.H.M., Kroon, W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. Heart Circ. Physiol. 297, 1058–1068 (2009)CrossRefGoogle Scholar
  11. 11.
    Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 262–267 (1992)CrossRefGoogle Scholar
  12. 12.
    Jensen, J.A.: FIELD: a program for simulating ultrasound systems. Med. Biol. Eng. Comput. 34(1), 351–353 (1996)Google Scholar
  13. 13.
    Lockwood, G.R., Talman, J.R., Brunke, S.S.: Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(4), 980–988 (1998)CrossRefGoogle Scholar
  14. 14.
    Papadacci, C., Pernot, M., Couade, M., Fink, M., Tanter, M.: High-contrast ultrasound imaging of the heart. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(2), 288–301 (2014)CrossRefGoogle Scholar
  15. 15.
    Lopata, R.G.P., Nillesen, M.M., Hansen, H.H.G., Gerrits, I.H., Thijssen, J.M., de Korte, C.L.: Performance of two dimensional displacement and strain estimation techniques using a phased array transducer. Ultrasound Med. Biol. 35(12), 2031–2041 (2009)CrossRefGoogle Scholar
  16. 16.
    De Craene, M., Alessandrini, M., Allain, P., Marchesseau, S., Waechter-Stehle, I., Weese, J., Saloux, E., Morales, H.G., Cuingnet, R., Delingette, H., Sermesant, M., Bernard, O., D’hooge, J.: Generation of ultra-realistic synthetic echocardiographic sequences. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 73–76 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maartje M. Nillesen
    • 1
    Email author
  • Anne E. C. M. Saris
    • 1
  • Hendrik H. G. Hansen
    • 1
  • Stein Fekkes
    • 1
  • Frebus J. van Slochteren
    • 2
  • Peter H. M. Bovendeerd
    • 3
  • Chris L. De Korte
    • 1
  1. 1.Medical UltraSound Imaging Center, Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
  2. 2.University Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations