3D Farnebäck Optic Flow for Extended Field of View of Echocardiography

  • A. DanudibrotoEmail author
  • O. Gerard
  • M. Alessandrini
  • O. Mirea
  • J. D’hooge
  • E. Samset
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)


3D echocardiography has enabled new clinical applications of ultrasound related to both interventional guidance and quantification of chamber characteristics (e.g. volumes, function). However, image quality may be hampered by dropouts in the image as well as limited field of view. By compounding data from several overlapping images, a volume with extended field of view can be formed. A 3D method based on Farnebäck optic flow is proposed to perform registration between ultrasound images taken from different orientations. It utilizes signal decomposition into polynomial basis functions and solves the transformation between the volumes analytically. Validation using synthetic data sets showed a registration error of 0.47 \(\pm \) 0.05 mm. And testing on data sets of 50 real images showed promising results.


Rigid registration of 3D echocardiography Extension of field of view Farnebäck optic flow 

Supplementary material

339585_1_En_15_MOESM1_ESM.mkii (72 kb)
Supplementary material (mkii 73 KB)


  1. 1.
    Rajpoot, K., Grau, V., Noble, J.A., Szmigielski, C., Becher, H.: Multiview fusion 3-D echocardiography: improving the information and quality of real-time 3-D echocardiography. UMB 37(7), 1056–1072 (2011)Google Scholar
  2. 2.
    Brattain, L.J., Howe, R.D.: Real-time 4D ultrasound mosaicing and visualization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 105–112. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Alessandrini, M., Liebgott, H., Friboulet, D., Bernard, O.: Simulation of realistic echocardiographic sequences for ground-truth validation of motion estimation. ICIP 2012, 2329–2332 (2012)Google Scholar
  4. 4.
    Ansorge, R.E., Sawiak, S.J., Williams, G.B.: Exceptionally fast non-linear 3D image registration using GPUs. In: 2009 IEEE NSS/MIC, pp. 4088–4094. IEEE (2009)Google Scholar
  5. 5.
    Farnebäck, G.: Polynomial expansion for orientation and motion estimation. Ph.D. thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden (2002). Dissertation No 790, ISBN 91-7373-475-6Google Scholar
  6. 6.
    Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  7. 7.
    Gao, H., Choi, H.F., Claus, P., Boonen, S., Jaecques, S., van Lenthe, G., Van Der Perre, G., Lauriks, W., D’hooge, J.: A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images. IEEE Trans. UFFC 56(2), 404–409 (2009)CrossRefGoogle Scholar
  8. 8.
    Grau, V., Becher, H., Noble, J.A.: Phase-based registration of multi-view real-time three-dimensional echocardiographic sequences. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 612–619. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  9. 9.
    Grau, V., Noble, J.A.: Adaptive multiscale ultrasound compounding using phase information. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 589–596. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  10. 10.
    Kiss, G., Asen, J., Bogaert, J., Amundsen, B., Claus, P., D’hooge, J., Torp, H.: Multi-modal cardiac image fusion and visualization on the GPU. In: 2011 IEEE International IUS, pp. 254–257, October 2011Google Scholar
  11. 11.
    Lang, R.M., Mor-Avi, V., Dent, J.M., Kramer, C.M.: Three-dimensional echocardiography: is it ready for everyday clinical use? JACC: Cardiovasc. Imaging 2(1), 114–117 (2009)Google Scholar
  12. 12.
    Mulder, H.W., van Stralen, M., van der Zwaan, H.B., Leung, K.Y.E., Bosch, J.G., Pluim, J.P.W.: Multiframe registration of real-time three-dimensional echocardiography time series. J. Med. Imaging 1(1), 014004 (2014)CrossRefGoogle Scholar
  13. 13.
    Ni, D., Qu, Y., Yang, X., Chui, Y.P., Wong, T., Ho, S.S., Heng, P.A.: Volumetric ultrasound panorama based on 3D SIFT. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 52–60. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  14. 14.
    Schneider, R.J., Perrin, D.P., Vasilyev, N.V., Marx, G.R., del Nido, P.J., Howe, R.D.: Real-time image-based rigid registration of three-dimensional ultrasound. Med. Image Anal. 16(2), 402–414 (2012)CrossRefGoogle Scholar
  15. 15.
    Wachinger, C., Wein, W., Navab, N.: Three-dimensional ultrasound mosaicing. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 327–335. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  16. 16.
    Yao, C., Simpson, J.M., Jansen, C.H., King, A.P., Penney, G.P.: Spatial compounding of large sets of 3D echocardiography images. In: SPIE Medical Imaging, pp. 726515-1-8. International Society for Optics and Photonics (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Danudibroto
    • 1
    • 2
    Email author
  • O. Gerard
    • 1
  • M. Alessandrini
    • 2
  • O. Mirea
    • 2
  • J. D’hooge
    • 2
  • E. Samset
    • 1
  1. 1.GE Vingmed UltrasoundOsloNorway
  2. 2.Department of Cardiovascular SciencesKU LeuvenLeuvenBelgium

Personalised recommendations