Assessment of Myofiber Orientation in High Resolution Phase-Contrast CT Images

  • V. BaličevićEmail author
  • S. Lončarić
  • R. Cárdenes
  • A. Gonzalez-Tendero
  • B. Paun
  • F. Crispi
  • C. Butakoff
  • B. Bijnens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)


Complex helical organization of cardiac fibers is one of the key factors for efficient beat-to-beat contraction and electrical impulse propagation. Complete understanding of this (inter-individual) configuration is limited by image acquisition and analysis constraints. Consequently, extensive quantification of myofiber orientation and remodeling within diverse cases is still lacking. With its high resolution and contrast, synchrotron-based phase-contrast X-ray imaging offers potential for assessing this information. Although it recently gained increased attention for biomedical purposes, only few cardiac applications were presented to this date. In this paper, we used synchrotron-based acquisitions of a healthy fetal rabbit heart and implemented a structure tensor method for estimating fiber orientation. For comparison, we generated the common rule-based model, simulating fiber angles distribution for the given geometry. Although we find similar fiber angle transmural courses compared to the theoretical, high-resolution imaging and analysis show that the myocardium in an individual is more complex than often assumed.


Myocytes arrangement Fiber angle Synchrotron imaging Structure tensor Streeter model 



The experiments were performed on the ID19 beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to Anne Bonnin at ESRF for providing assistance in using beamline ID19. This study was partly supported by Ministry of science, education and sports of the Republic of Croatia (036-0362214-1989); Ministerio de Economia y Competitividad (SAF2012-37196, TIN2012-35874); Instituto de Salud Carlos III (PI11/00051, PI11/01709, PI12/00801,PI14/00226) integrados en el Plan Nacional de I+D+I y cofinanciados por el ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) Otra manera de hacer Europa; the EU-FP7 for research, technological development and demonstration under grant agreement VP2HF (no611823); The Cerebra Foundation for the Brain Injured Child (Carmarthen, UK); Obra Social la Caixa (Barcelona, Spain); Fundació Mutua Madrileña and Fundació Agrupació Mutua (Spain).


  1. 1.
    Streeter, D.: Gross morphology and fiber geometry of the heart. In: Bethesda, B. (ed.) Handbook of Physiology, The Cardiovascular System, Chap. 4, vol. 1, pp. 61–112. American Physiological Society, US (1979)Google Scholar
  2. 2.
    Nielsen, P.M.F., Le Grice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260, H1365–H1378 (1991)Google Scholar
  3. 3.
    Lombaert, H., Peyrat, J.-M., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Imaging 31(7), 1436–1447 (2012)CrossRefGoogle Scholar
  4. 4.
    Geerts, L., Bovendeerd, P., Nicolay, K., Arts, T.: Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am. J. Physiol. Heart Circ. Physiol. 283, H13–H145 (2002)CrossRefGoogle Scholar
  5. 5.
    Savadjiev, P., Strijkers, G., Bakermans, A., Piuze, E., Zucker, S., Siddiqi, K.: Heart wall myofibers are arranged in minimal surfaces to optimize organ function. PNAS 109(24), 9248–9253 (2012)CrossRefGoogle Scholar
  6. 6.
    Scollan, D.F., Holmes, A., Zhang, J., Winslow, R.L.: Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging. Ann. Biomed. Eng. 28(8), 934–944 (2000)CrossRefGoogle Scholar
  7. 7.
    Healy, L.J., Jiang, Y., Hsu, E.W.: Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13(1), 74 (2011)CrossRefGoogle Scholar
  8. 8.
    Piuze, E., Sporring, J., Siddiqi, K.: Maurer-Cartan forms for fields on surfaces: application to heart fiber geometry. IEEE TPAMI PP(99), 1 (2015)CrossRefGoogle Scholar
  9. 9.
    Lee, W.N., Larrat, B., Pernot, M., Tanter, M.: Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium. Phys. Med. Biol. 57(16), 5075–5095 (2012)CrossRefGoogle Scholar
  10. 10.
    Papadacci, C., Pernot, M., Tanter, M., Fink, M.: Towards backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues. In: Conference Proceedings of the IEEE IUS, pp. 1208–1211 (2013)Google Scholar
  11. 11.
    Gilbert, S.H., Sands, G.B., LeGrice, I.J., Smaill, B.H., Bernus, O., Trew, M.L.: A framework for myoarchitecture analysis of high resolution cardiac MRI and comparison with diffusion tensor MRI. In: Conference Proceedings of the IEEE Engineering Medicine and Biology Society, pp. 4063–4066 (2012)Google Scholar
  12. 12.
    Jouk, P.S., Mourad, A., Milisic, V., Michalowicz, G., Raoult, A., Caillerie, D., Usson, Y.: Analysis of the fiber architecture of the heart by quantitative polarized light microscopy: accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur. J. Cardiothorac. Surg. 31(5), 91–921 (2007)CrossRefGoogle Scholar
  13. 13.
    Ghafaryasl, B., Bijnens, B.H., van Vliet, E., Crispi, F., Cárdenes, R.: Cardiac microstructure estimation from multi-photon confocal microscopy images. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 80–88. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Gan, Y., Fleming, C.P.: Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography. Biomed. Opt. Express 4(10), 2150–2165 (2013)CrossRefGoogle Scholar
  15. 15.
    Varray, F., Wang, L., Fanton, L., Zhu, Y., Magnin, I.: High resolution extraction of local human cardiac fibre orientations. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 150–157. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Ni, H., Castro, S.J., Stephenson, R.S., Jarvis, J.C., Tristan Lowe, T., Hart, G., Boyett, M.R., Zhang, H.: Extracting myofibre orientation from micro-CT images: an optimisation study. Comput. Cardiol. 40, 823–826 (2013)Google Scholar
  17. 17.
    Sebastian, R., Zimmerman, V., Sukno, F., Bijnens, B., Frangi, A.: Cardiac modelling for pathophysiology research and clinical applications. The need for an automated pipeline. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings, vol. 25/4, pp. 2207–2210. Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Muñoz-Moreno, E., Cárdenes, R., Frangi, A.: Analysis of the helix and transverse angles of the muscle fibers in the myocardium based on diffusion tensor imaging. In: Conference Proceedings of the IEEE EMBS, pp. 5720–5723 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • V. Baličević
    • 1
    Email author
  • S. Lončarić
    • 1
  • R. Cárdenes
    • 2
  • A. Gonzalez-Tendero
    • 3
    • 4
  • B. Paun
    • 2
  • F. Crispi
    • 3
    • 4
  • C. Butakoff
    • 2
  • B. Bijnens
    • 2
    • 5
  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.PhySenseN-RAS, Universitat Pompeu FabraBarcelonaSpain
  3. 3.Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital Sant Joan de Deu), IDIBAPSUniversity of BarcelonaBarcelonaSpain
  4. 4.Centre for Biomedical Research on Rare Diseases (CIBER-ER)BarcelonaSpain
  5. 5.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations