Skip to main content

Revealing Differences in Anatomical Remodelling of the Systemic Right Ventricle

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

  • 1756 Accesses

Abstract

Cardiac remodelling, which refers to the change of the shape and size of the myocardium, is an adaptive response to developmental, disease and surgical processes. Traditional metrics of length, volume, aspect ratio or wall thickness are used in the clinic and in medical research, but have limited capabilities to describe complex structures such as the shape of cardiac ventricles. In this work we present an example of how computational analysis of cardiac anatomy can reveal more detailed description of developmental and remodelling patterns. The clinical problem is the analysis of the impact of two different surgical palliation techniques for hypoplastic left heart syndrome. Construction of a computational atlas and the statistical description of its variability are performed from the short axis stack of 128 subjects. Results unveil, for the first time in the literature, the differences in remodelling of the systemic right ventricle depending on the surgical palliation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellsham-Revell, H.R., Tibby, S.M., Bell, A.J., Witter, T., Simpson, J., Beerbaum, P., Anderson, D., Austin, C.B., Greil, G.F., Razavi, R.: Serial magnetic resonance imaging in hypoplastic left Heart syndrome gives valuable insight into ventricular and vascular adaptation. J. Am. Coll. Cardiol. 61(5), 561–570 (2013)

    Article  Google Scholar 

  2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Do Chung, J., Cowan, B.R., et al.: The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)

    Article  Google Scholar 

  4. Fratz, S., Chung, T., Greil, G.F., Samyn, M.M., Taylor, A.M., Valsangiacomo Buechel, E.R., Yoo, S.-J., Powell, A.J.: Guidelines and protocols for cardiovascular magnetic resonance in Children and Adults with congenital heart disease: SCMR expert consensus group on congenital Heart disease. J. Cardiovasc. Magn. Reson. 15(1), 51 (2013)

    Article  Google Scholar 

  5. Frommelt, P.C., Gerstenberger, E., Cnota, J.F., Cohen, M.S., Gorentz, J., Hill, K.D., et al.: Impact of initial shunt type on cardiac size and function in children with single right ventricle anomalies before the Fontan procedure: the single ventricle reconstruction extension trial. J. Am. Coll. Cardiol. 64(19), 2026–2035 (2014)

    Article  Google Scholar 

  6. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego (2013)

    Google Scholar 

  7. Good, P.I.: Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. Springer, New York (2000). Springer Series in Statistics

    Book  Google Scholar 

  8. Lamata, P., Niederer, S., Nordsletten, D., Barber, D.C., Roy, I., Hose, D.R., Smith, N.: An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med. Image Anal. 15(6), 801–813 (2011)

    Article  Google Scholar 

  9. Lamata, P., Sinclair, M., Kerfoot, E., Lee, A., Crozier, A., Blazevic, B., et al.: An automatic service for the personalization of ventricular cardiac meshes. J. R. Soc. Interface 11(91), 20131023 (2014)

    Article  Google Scholar 

  10. Lewandowski, A.J., Augustine, D., Lamata, P., Davis, E.F., Lazdam, M., Francis, J., McCormick, K., et al.: Preterm Heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 127(2), 197–206 (2013)

    Article  Google Scholar 

  11. Medrano-Gracia, P., Cowan, B.R., Ambale-Venkatesh, B., Bluemke, D.A., Eng, J., et al.: Left ventricular shape variation in asymptomatic populations: the multi-ethnic study of atherosclerosis. J. Cardiovasc. Magn. Reson. 16, 56 (2014)

    Article  Google Scholar 

  12. Olmos, S., Garcia, J., Jané, R., Laguna, P.: ECG signal compression plus noise filtering with truncated orthogonal expansions. Sig. Process. 79(1), 97–115 (1999)

    Article  MATH  Google Scholar 

  13. Styner, M., Oguz, I., Xu, S., Pantazis, D., Gerig, G.: Statistical group differences in anatomical shape analysis using Hotelling T2 metric. In: Medical Imaging, International Society for Optics and Photonics, vol. 6512 (2007)

    Google Scholar 

  14. Swets, D., Weng, J.: Using discriminant Eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18, 831–836 (1996)

    Article  Google Scholar 

  15. Wong, J., Lamata, P., Rathod, R.H., Bertaud, S., Dedieu, N., et al.: Using cardiac magnetic resonance and computational modelling to assess the systemic right ventricle following different Norwood procedures: a dual centre study. J. Cardiovasc. Magn. Reson. 17(1), M12 (2015)

    Article  Google Scholar 

  16. Woolson, R.F., Clarke, W.R.: Statistical Methods for the Analysis of Biomedical Data. Wiley, New Jersey (2011)

    Google Scholar 

  17. Young, A.A., Cowan, B.R., Thrupp, S.F., Hedley, W.J., Dell’Italia, L.J.: Left ventricular mass and volume: fast calculation with guide-point modeling on mr images. Radiology 216(2), 597–602 (2000)

    Article  Google Scholar 

  18. Zhang, X., Cowan, B.R., Bluemke, D.A., Finn, J.P., Fonseca, C.G., Kadish, A.H., et al.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS ONE 9(10), e110243 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study has received funding by the Department of Health through the NIHR comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust, the Centre of Excellence in Medical Engineering (funded by the Wellcome Trust and EPSRC; grant number WT 088641/Z/09/Z) as well as the BHF Centre of Excellence (British Heart Foundation award RE/08/03). PL holds a Sir Henry Dale Fellowship funded jointly by the Wellcome Trust and the Royal Society (grant no. 099973/Z/12/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Zacur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zacur, E., Wong, J., Razavi, R., Geva, T., Greil, G., Lamata, P. (2015). Revealing Differences in Anatomical Remodelling of the Systemic Right Ventricle. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics